

Gilead

Stormwater Management Strategy

Prepared for Lendlease Communities (Figtree Hill)

22 June 2022

Document Information

Prepared by Enspire Solutions Pty Ltd Level 4, 153 Walker Street, North Sydney NSW 2060 ABN 71 624 801 690 © Enspire 2022. Copyright in the whole and every part of this document belongs to Enspire and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Enspire.

This document is produced by Enspire solely for the benefit and use by the client in accordance with the terms of the engagement. Enspire does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Document Title	Gilead
Document Subject	Stormwater Management Strategy
Prepared For	Lendlease Communities (Figtree Hill)
Project Name	Gilead
Project Number	190086
File Name	rept001-190086-02-enspire-r02-220622-gilead stormwater management strategy.docx

Transmittal

Revision	Date	Prepared by	Checked by	Approved by
01	31/05/2022	Andrew Lim Shawn Hotong	Cameron Vella	Lauren Connors
		Issue for Client review		
02	22/06/2022	Andrew Lim Shawn Hotong Issue for TAP submission	Cameron Vella	Lauren Connors

Contents

E>	cecutive S	ummary	1
1	Introduct	ion	4
	1.1 Exis	ting Site Conditions	6
2	Proposed	d Stormwater Management Strategy	10
3	Flooding		12
	3.1 Ass	essment Scope	12
	3.2 Moo	Jelling Approach	12
	3.3 Hyd	rology	12
	3.3.1	Rainfall and Losses	12
	3.3.2	Catchment Representation	12
	3.3.3	Existing Farm Dams	13
	3.4 Hyd	raulics	14
	3.5 Res	ults and Discussion	14
4	Stormwa	ter Quantity Controls	16
	4.1 Per	formance Criteria	16
	4.2 Stor	mwater Quantity Management Strategy	16
	4.3 Moo	delling Methodology	17
	4.4 Cate	chment Hydrology	18
	4.5 Cat	chment Representation	19
	4.6 Res	ults and Discussion	20
	4.6.1	Basin D4	21
	4.6.2	Basin D10	21
	4.6.3	Basin D16	21
	4.6.4	Basin D24 and Figtree Hill Interface	21
5	Stormwa	ter Quality Controls	
	5.1 Per	formance Criteria	22
	5.2 Stor	mwater Quality Management Strategy	22
	5.3 Moo	delling Methodology	23
	5.3.1	Catchment Hydrology	24
	5.3.2	Catchment Representation	
	5.3.3	Catchment Pollutant Generation	27
	5.3.4	Treatment Node Properties	
	5.4 Res	ults and Discussion	33
	5.4.1	Basin D24 and Figtree Hill Interface	
6	Stormwa	ter Infrastructure Land Use Planning	35
7	Stream E	rosion Index	
	7.1 Red	luced Detention Storage Sensitivity	
8		ons and Recommendations	

List of Tables

Table 1 – Existing Watercourse Summary	7
Table 2 – ARR Datahub Metadata	
Table 3 – Intensity Frequency Duration Coefficients	18
Table 4 – Initial Loss – Continuous Loss Hydrology Parameters	18
Table 5 – Catchment Properties	19
Table 6 – Detention Basin Volumes	20
Table 7 – MUSIC Model Rainfall Data	
Table 8 – MUSIC Model Monthly PET	
Table 9 – MUSIC Catchment Rainfall-Runoff Parameters	
Table 10 – MUSIC Node Details Summary	
Table 11 – MUSIC Catchment Pollutant Generation Parameters	
Table 12 – Bio-Retention Basin Parameters	
Table 13 – MUSIC Modelling Results	33
Table 14 – Stormwater Infrastructure Land Use Summary	35
Table 15 – Stream Erosion Index Assessment with Detention	
Table 16 – Stream Erosion Index Assessment with Reduced Detention	

List of Figures

Figure 1 – Gilead Locality Plan	4
Figure 2 – Gilead Development Masterplan	5
Figure 3 – Gilead Existing Conditions Plan	6
Figure 4 – Zone 1 Typical Existing Conditions	7
Figure 5 – Zone 2 Typical Existing Conditions	
Figure 6 – Zone 3 Typical Existing Conditions	9
Figure 7 – Zone 4 Typical Existing Conditions	9
Figure 8 – Existing Catchment Plan	. 13
Figure 9 – Existing Local 1% AEP and PMF Extent	. 14
Figure 10 – Existing Nepean River 1% AEP and PMF Extent	. 15
Figure 11 – Stormwater Quantity Infrastructure Plan	. 17
Figure 12 – Stormwater Quality Infrastructure Plan	. 23
Figure 13 – Sample Extract of MUSIC Modelling Layout	. 24
Figure 14 – Example of Active Open Space	. 26
Figure 15 – Example of Naturalised Open Space	. 26
Figure 16 – Typical Vortex Type GPT Concept	. 28
Figure 17 – Typical Bio-Retention Basin Arrangement	. 29
Figure 18 – Example Roadside Planter Concept	. 30
Figure 19 – Example Roadside Swale Concept	. 31
Figure 20 – Example Revegetation Environmental Improvements	
Figure 21 – Example Proprietary Tree Pit Concept	. 32

List of Appendices

- Appendix A Flood Assessment
- Appendix B Upper Canal Flume Data
- Appendix C Stormwater Model Plans
- Appendix D Figtree Hill Strategy Coordination

Executive Summary

Greater Macarthur has been identified as Growth Area by the NSW Government and will provide for 15,000 new homes to the broader south Campbelltown region. Lendlease's landholding at Gilead has been identified as a Priority Precinct and will make the first contribution to housing supply in the region of approximately 3,300 new homes, retail centre and education facilities.

Importantly, it will secure key conservation outcomes including the establishment of linked koala and fauna corridors between the Georges River and Nepean River.

To facilitate both the housing and conservation outcomes for the site, a Planning Proposal is being prepared to rezone a portion of the site known as Gilead under the State Environmental Planning Policy (Precincts – Western Parkland City) 2021. The Planning Proposal will establish the Urban Development Zone for land capable of development and introduce a C2 Environmental Conservation zone for land containing key fauna habitat to be retained as well as land that native bushland is to be reconstructed. This report specifically addresses the stormwater management strategy and has been used to shape and inform the Planning Proposal and associated development outcomes.

The table below summarises the outcomes of this Strategy and demonstrates that surface areas nominated for stormwater management infrastructure at this strategic planning phase is capable of supporting the Gilead development.

This infrastructure is proposed to be located within land identified for urban development and in areas marked for conservation that are currently clear of any significant vegetation due to previous agricultural uses. Where the infrastructure is located within conservation areas, an appropriate level of revegetation is to occur to ensure that it provides a stormwater management function as well as a contribution towards the conservation outcomes in Gilead.

Basin ID	ID Modelled Surface Area Total Infrastructure Area Required (Bio-retention + OSD) (Modelled Surface Area + 50%) (m ²) (m ²)		Surface Area Provided for Capability Assessment (m ²)	
Basin D1a	2,990	4,500	7,000	
Basin D1b	2,120	3,180	3,400	
Basin D1c	2,780	4,170	4,650	
Basin D1d	3,525	5,300	8,150	
Basin D2	3,690	5,600	11,150	
Basin D3	4,730	7,100	9,320	
Basin D4	260	400	N/A	
Basin D5	5,150	7,800	10,700	
Basin D6	3,345	5,100	10,090	
Basin D7	5,885	8,900	11,300	
Basin D9	5,420	8,200	11,590	
Basin D10	8,455	12,700	16,120	
Basin D11	630	1,000	2,830	
Basin D12	1,965	3,000	3,440	
Basin D13	3,350	5,100	8,040	
Basin D14	4,625	7,000	7,640	
Basin D15	3,625	5,500	5,600	

Total	97,145	146,750	217,880
Basin D24	2,390	3,600	10,170
Basin D23	8,610	13,000	19,230
Basin D21	13,120	19,700	34,460
Basin D19	1,250	1,900	3,530
Basin D18	2,750	4,200 6,500	
Basin D17	450	700	3,870
Basin D16	6,030	9,100 9,100	

This stormwater management strategy report demonstrates that the Gilead development can be supported by stormwater control infrastructure to adequately achieve statutory performance targets to facilitate the development.

The proposed development is positioned above existing 1% AEP flood extents and generally above the PMF event such that additional flood mitigation works beyond stormwater peak flow management up to the 1% AEP will not be necessary. In addition, due to landform constraints, bridge crossings are likely to be elevated above the PMF event. A flood evacuation strategy is unlikely to be necessary for The Site due to its elevation above flood risks.

Control of post-development peak flows is to be managed through detention basins, and water quality improvements are to be controlled through a system of rainwater tanks, gross pollutant traps and bio-retention basins. Specifically, the performance requirements of the WaterNSW

Upper Canal (which traverses part of Gilead) will be achieved with refined performance checks to be undertaken at detail design.

Based on the stormwater quantity and quality modelling, approximate land use requirements have been calculated and compared to plan areas reserved in the masterplan which confirms that spatially the stormwater management strategy can be accommodated.

The following opportunities have been identified to improve the fundamental strategy detailed in this report. It is recommended that these opportunities be investigated as part of detailed design to ensure high amenity development outcomes are achieved and should form part of the Development Control Plan to be adopted for the land and inform a local Planning Agreement with Council to confirm delivery.

- An Urban Development land use zoning is recommended to provide flexibility in stormwater infrastructure positioning and size which will allow infrastructure to be designed in detail that responds to the site-specific constraints of the infrastructure.
- The Figtree Hill Basin 3B design could be updated to include part of the Gilead development that naturally falls toward this basin.
- Alternative water sensitive urban design solutions could be considered that may be more beneficial than standard practice such as:
 - Roadside planter beds (with or without bio-filtration media)
 - Roadside swales (with or without bio-filtration media)
 - Large scale vegetation regeneration of previous agricultural land offsetting net development pollutant generation.
 - Proprietary filtration tree pits
 - On-lot raingardens
 - Complimentary pressurised systems (e.g. recirculation or harvesting).
- The impact of a reduced detention strategy should be investigated to determine if detention of environmental impact flows (e.g. 50% AEP event only) will have detrimental impacts on existing waterways and downstream lands. A reduced detention basin strategy has potential to minimise net environmental impact through reduced land disturbance, vegetation clearing and rock excavation.

1 Introduction

Greater Macarthur has been identified as Growth Area by the NSW Government and will provide for 15,000 new homes to the broader south Campbelltown region. Lendlease's landholding at Gilead has been identified as a Priority Precinct and will make the first contribution to housing supply in the region of approximately 3,300 new homes, retail centre and education facilities.

Importantly, it will secure key conservation outcomes including the establishment of linked koala and fauna corridors between the Georges River and Nepean River.

To facilitate both the housing and conservation outcomes for the site, a Planning Proposal is being prepared to rezone a portion of the site known as Gilead (The Site) under the State Environmental Planning Policy (Precincts – Western Parkland City) 2021. The Planning Proposal will establish the Urban Development Zone for land capable of development and introduce a C2 Environmental Conservation zone for land containing key fauna habitat to be retained as well as land that native bushland is to be reconstructed. This report specifically addresses the stormwater management strategy and has been used to shape and inform the Planning Proposal and associated development outcomes.

Figure 1 – Gilead Locality Plan Gilead site highlighted yellow.

Figure 2 – Gilead Development Masterplan Source: Gilead Structure Plan, 23 May 2022, Urbis.

The Site consists of five properties including Lot 2 in DP 1218887, Lot 2 in DP 249393, Lot 1 DP603675, Lot 2 DP603674 and part of Lot 5 in DP 1240836 that have a combined area of 495ha.

The Site has been subject to significant clearing and used for cattle grazing. Intact stands of vegetation are generally contained within the creek lines that traverse the Site including the Menangle Creek, Nepean Creek and Woodhouse Creek and along the Nepean River. Outside of these areas, vegetation consists of pastureland and scattered paddock trees.

The Upper Canal is a State Heritage Item that traverses The Site from South to North and there are a series of electrical transmission line, water and gas pipeline easements that traverse the central park of the Site from North to South.

The Site sits to the south and west of the Mt Gilead Homestead complex that is a State Heritage Item.

1.1 Existing Site Conditions

The Gilead site is currently in use for agriculture purposes and is best described as a site with four key zones. The definition of each zone is based on consistent features with unique features between zones and are shown in **Figure 3** and described below. Aspects of the Gilead site that are consistent throughout and are defining characteristics include:

- Generous Koala corridor protection zones surrounding the east, north and west perimeters of development.
- Generally incised creek lines with heavily vegetated banks and rock outcrops providing a unique habitat for native flora and fauna. Refer **Table 1** for water course summary.
- Relatively small farm dams dispersed throughout the site.

Large tracts of cleared paddocks associated with historic agricultural uses of the land.

Figure 3 – Gilead Existing Conditions Plan

•			
Watercourse ID (Refer Figure 3)	Watercourse Name (If Applicable)	Stream Order	Comments
4A	Nepean River	Fourth	To be retained
4B	Menangle Creek	Fourth	To be retained
3A	Woodhouse Creek	Third	To be retained
2A	Nepean Creek	Second	To be retained
2B	Woodhouse Creek	Second	To be retained
1A	N/A	First	To be retained
1B	N/A	First	To be retained
1C	N/A	First	To be retained
1D	N/A	First	To be retained and embellished
1E	Woodhouse Creek	First	To be retained

Table 1 – Existing Watercourse Summary

Stream order classifications as per NRAR Guidelines for Controlled Activities on Waterfront Land.

Zone 1 is located either side of Woodhouse Creek directly adjacent Figtree Hill and consists of open pastureland with isolated and scattered vegetation within, and generally heavily vegetated creek lines surrounding the zone extent. The topography consists of two key ridge lines with stormwater runoff directed generally east and west toward existing waterways. The existing gradients within Zone 1 range from 3% up to 10% and the existing soils are typically clay with underlying rock. An existing high-pressure gas main and watermain traverse Zone 1 from south to north. **Figure 4** provides a photo of the typical conditions within Zone 1.

Figure 4 – Zone 1 Typical Existing Conditions

Zone 2 is bound by two existing overhead electrical transmission lines within its east bounds and the existing WaterNSW Upper Canal to its west. The northern half of Zone 2 is generally clear of vegetation while the southern half consists of scattered trees throughout. A ridge line is located generally along the alignment of the overhead electrical transmission lines with existing gradients between the transmission easement and Upper Canal ranging from 5% up to 14%. The existing soils are typically clay with underlying rock. **Figure 5** provides a photo of the typical conditions within Zone 2.

Figure 5 – Zone 2 Typical Existing Conditions

Zone 3 describes two separate areas which are both bound by the existing WaterNSW Upper Canal and existing major creek lines. Zone 3 typically consists of relatively dense pockets of vegetation with existing gradients from 5% up to 14%. A clear defining feature of Zone 3 is the relatively shallow depth of rock and in many cases existing rock is exposed with no soil cover. Exposed rock is generally located in proximity to existing creek lines but also in discrete areas throughout. **Figure 6** provides a photo of the typical conditions within Zone 3.

Figure 6 – Zone 3 Typical Existing Conditions

Zone 4 is located on the west most extent of The Site and consists of cleared agricultural lands incorporating four irrigation pivots. Each irrigation pivot is approximately 500m in diameter. The topography consists of one key ridge line that runs south to north bisecting the zone with stormwater runoff directed generally east and west toward Nepean Creek and Nepean River. The existing gradients within Zone 4 range from 2% up to 6% and the existing soils are typically clay with shallow underlying rock. **Figure 7** provides a photo of the typical conditions within Zone 4.

Figure 7 – Zone 4 Typical Existing Conditions

2 Proposed Stormwater Management Strategy

The Gilead Stormwater Management Strategy (**The Strategy**) is grounded on an overarching philosophy of connecting manmade and natural environments that respects the needs of both. To this effect, The Strategy aims to provide maximum flexibility in stormwater management options such that design to accommodate site specific constraints at a micro design level (e.g. at Development Application stage) does not compromise on the balance of needs for the project.

The needs of development have been defined based on the following control documentation that outline key objectives to generally meet minimum statutory requirements:

- Campbelltown (Sustainable City) Development Control Plan 2015 (Council DCP):
 - Campbelltown (Sustainable City) Development Control Plan 2015 Volume 1 Part 2 Requirements Applying to All Types of Development.
 - Campbelltown (Sustainable City) Development Control Plan 2015 Volume 2 Part 7 Mount Gilead DCP.
 - Engineering Design Guide for Development, June 2009 (EDGD).
- Guideline for Development Adjacent to the Upper Canal and Warragamba Pipelines, September 2021, WaterNSW (**Upper Canal Guidelines**).
- NSW MUSIC Modelling Guidelines, August 2015, BMT WBM.
- Mount Gilead MDP Lands Water Cycle Management Strategy, 20 November 2017, Cardno (Figtree Hill WCMS).
- Greater Macarthur Water Management Report, August 2015, GHD.

Key statutory outcomes from the above can be summarised as the need to:

- Maximise safety of public spaces during storm events up to the 1% AEP event.
- Maximise safe passage of Probable Maximum Flood (PMF) flows.
- Minimise the erosion of existing waterways.
- Minimise the discharge of pollutants from operation of development sites.
- Minimise maintenance of stormwater management systems.
- Eliminate or minimise impact on the existing WaterNSW Upper Canal.

The needs of the environment have been defined by the project team in consultation with ecology and aboriginal groups and may be summarised as the need to:

- Protect and preserve existing waterways and the habitats they support.
- Protect, preserve, and integrate the existing character of remnant natural environments.
- Protect and celebrate the historical artefacts of First Nations people both tangible and intangible.
- Minimise land disturbance as much as practical.

The Strategy proposed adopts a typical management system to demonstrate a functional outcome against the project needs with suggestions and recommendations to be considered as part of future design submissions (e.g. Development Control Documents, Master Planning and Development Applications) that aim to promote better practice design that responds to stage specific constraints and opportunities. This is considered appropriate for rezoning purposes as the desired outcomes, performance targets, standard infrastructure solutions and alternative opportunities are adequately defined in this Strategy to guide the proposed development. The typical management system incorporates a water quality treatment train consisting rainwater tanks, gross pollutant traps and bio-retention basins, and water quantity control infrastructure consisting of dry detention basins.

To support the success of The Strategy, an Urban Development zoning across the Gilead site is recommended to ensure flexibility in infrastructure positioning, size, and range of available techniques both present and those that may be potentially available in future. Without a flexible zoning (i.e. implementing traditional SP2 zoning) opportunities to develop innovative stormwater solutions that respond well to stage specific site constraints will be significantly limited.

Following the submission of the Planning Proposal, Lendlease intend to commence working with Campbelltown City Council to refine the detailed masterplan for Gilead and preparation of the Development Control Plan. As part of this process, we expect there to be refinement to the Stormwater Management Strategy and subsequent establishment of appropriate development controls to inform future development applications.

3 Flooding

3.1 Assessment Scope

Due to the incised creek banks that generally surround development zones within The Site, the location of The Site relative to the Upper Nepean River catchment, and the proposed adoption of detention basins in the post-development scenario, local pre-development flood conditions have been assessed only.

Nepean River flooding has not been modelled and flood modelling outcomes from the Greater Macarthur Water Management Report, August 2015, GHD has been adopted to inform flood potential and flood risk for The Site as part of This Strategy.

The local flood assessment has been undertaken by Rhelm Pty Ltd (**Rhelm**) with details provided in **Appendix A** and summarised in the following sections.

3.2 Modelling Approach

Catchments have been represented using the XP-RAFTS modelling software while hydraulic modelling has been undertaken in TUFLOW software. LiDAR surface data has been adopted in the TUFLOW model noting that while this may not capture nuances within existing creek lines, the surface representation within creek lines will generally be higher in elevation than a detailed survey will provide due to the presence of dense vegetation and tree canopy cover. That is, adopting LiDAR surface data within creek lines generally provides a more conservative estimation of flood levels.

3.3 Hydrology

The local flooding assessment has been undertaken adopting Australian Rainfall and Runoff 2019 procedures.

3.3.1 Rainfall and Losses

Rainfall data and loss parameters have been sourced from the ARR DataHub and summarised in **Table 2**.

Parameter	Value
Storm Initial Losses (mm)	18 (NSW adjusted loss)
Storm Continuing Losses (mm/hr)	2.4 (NSW adjusted loss)
River Region – Division	South East Coast (NSW)
River Region	Hawkesbury River
Point Temporal Pattern Label	East Coast South
Version	2016_v2

Table 2 – ARR Datahub Metadata

3.3.2 Catchment Representation

Catchment areas and slope have been based on LiDAR surface data. Land uses have been based on NearMap 2022 imagery with impervious percentages applied based on typical industry modelling practice (refer **Appendix A**).

Gilead Stormwater Management Strategy

Figure 8 – Existing Catchment Plan

Source: Mount Gilead Preliminary Flood Modelling, June 2022, Rhelm

3.3.3 Existing Farm Dams

There are no existing farm dams with significant volume to meaningfully impact flood behaviour. The impact of existing farm dams has therefore not been considered.

3.4 Hydraulics

Catchment runoff hydrographs from XP-RAFTS have subsequently been applied in TUFLOW to model hydraulic outcomes of the flood assessment.

LiDAR surface data has been adopted at a 3m x 3m grid with roughness coefficients applied based on land use. No 1D elements have been modelled within existing creek lines.

3.5 Results and Discussion

Figure 9 provides an overlay of the existing 1% AEP and PMF extent based on the above methodology against the Gilead development masterplan. **Figure 10** provides an overlay of the existing 1% AEP and PMF extent based on the Greater Macarthur Water Management Report. As demonstrated the proposed development is positioned adequately above existing flood hazards and the proposed development with post-development stormwater detention control is very unlikely to generate meaningful impacts on existing flood behaviour. Further assessment of post-development flood behaviour may be necessary at detail design depending on whether a reduced stormwater detention strategy is adopted. On this basis, the proposed Gilead development is capable of meeting statutory flood planning requirements and a flood evacuation strategy is unlikely to be necessary.

Figure 9 – Existing Local 1% AEP and PMF Extent Source: Mount Gilead Preliminary Flood Modelling, June 2022, Rhelm

Figure 10 – Existing Nepean River 1% AEP and PMF Extent Source: Greater Macarthur Water Management Report, August 2015, GHD

4 Stormwater Quantity Controls

4.1 **Performance Criteria**

The stormwater quantity management strategy has been developed to meet the following objectives at discharge points into existing waterways:

- Post-development discharge flow rates are to be controlled to not exceed predevelopment discharge flow rates for typical storm events between the 50% AEP to 1% AEP events.
- Maximise safe passage of Probable Maximum Flood (PMF) flows.
- Minimise the erosion of existing waterways.

Where development is to discharge toward an existing WaterNSW Upper Canal flume The Strategy aims to meet the requirements of the Upper Canal Guidelines namely:

 Post-development discharge flow rates and velocities are to be controlled to not exceed pre-development discharge flow rates and velocities for typical storm events between the 1EY (1 year ARI) to 1% AEP events.

4.2 Stormwater Quantity Management Strategy

The stormwater quantity management strategy adopts detention basins as the primary control of post-development discharge rates and velocities. Basin outlet configurations are assumed to consist of a piped discharge control for very frequent storm events and overtopping weir control for frequent to infrequent storm events. It is intended to adopt relatively wide overtopping weirs to control depth and velocities given the generally vulnerable conditions downstream of most basins in the Gilead development.

This Strategy should not preclude the investigation and/or adoption of alternative management techniques as part of future design development that may better serve the needs of the project as defined in **Section 2**.

This infrastructure is proposed to be located within land identified for urban development and in areas marked for conservation that are currently clear of any significant vegetation due to previous agricultural uses. Where the infrastructure is located within conservation areas, an appropriate level of revegetation is to occur to ensure that it provides a stormwater management function as well as a contribution towards the conservation outcomes in Gilead.

Figure 11 – Stormwater Quantity Infrastructure Plan Locations and arrangement subject to detail design.

4.3 Modelling Methodology

The stormwater quantity management strategy has been modelled using the DRAINS v2022.01 software package adopting a RAFTS storage routing hydrological model. RAFTS hydrological modelling allows for the more accurate estimation of stormwater runoff from moderate to large catchment sizes (particularly rural catchments) while the DRAINS hydraulics calculations allow for more accurate estimations of basin performance. Australian Rainfall and Runoff 1987 procedures have been adopted due to the scale of the assessment and the urban typologies to be assessed which are better represented in the NSW context adopting ARR1987 hydrology compared to ARR2019 hydrology as implied through the Review of ARR Design Inputs for NSW Report, February 2019, NSW Office of Environment and Heritage.

To determine performance of The Strategy against the performance criteria the following methodology has been implemented:

- 1. Pre-development catchments have been determined adopting LiDAR contour data.
- 2. Pre-development catchments have then been modelled in DRAINS adopting a RAFTS hydrology model adopting parameters representative of each catchment's natural typography.

- a. For catchments discharging to existing watercourses, existing flow rates for 50%AEP and 1%AEP have been assessed only.
- b. For catchments discharging toward the WaterNSW Upper Canal flumes, existing flow rates and velocities for 1EY and 1%AEP have been generated and compared against estimates from data provided by WaterNSW (refer **Appendix B**)
- 3. Post-development catchments have been determined based on a preliminary design surface for the Gilead site.
- 4. Post-development catchments have then been modelled in DRAINS adopting a RAFTS hydrology model adopting parameters representative of each catchment's urban typography.
- 5. Detention basins have been added to the model prior to discharge nodes and designed to not exceed pre-development flow rates and/or velocities.

Modelling of the 1EY/50%AEP and 1%AEP storm events only has been undertaken to inform this Strategy. This is adequate for the purpose of positioning and sizing of stormwater infrastructure at a strategic level and design to cater for all storm events between these will form part of future design development and is not anticipated to impact The Strategy.

4.4 Catchment Hydrology

Catchment hydrology for the Gilead locality has been represented through the Intensity Frequency Duration coefficients defined in **Table 3**. These coefficients are consistent with those adopted for the Figtree Hill WCMS.

	2 Year ARI	50 Year ARI	
1-hour	32.79 62.60		
12-hour	6.36	12.82	
72-hour	1.85	4.03	
Skew (G)	0		
F2	4.29		
F50	15.8		

Table 3 – Intensity Frequency Duration Coefficients

Based on Figtree Hill WCMS Coefficients

Table 4 defines the adopted loss and surface roughness parameters to estimate catchment runoff. Similarly, these parameters are consistent with those adopted for the Figtree Hill WCMS.

Table 4 – Initial Loss – Continuous Loss Hydrology Parameters

	Previous Catchment	Impervious Catchment	
Initial Loss	15mm	1.5mm	
Continuing Loss	J Loss 2.5mm/hour 0mm/hour		
Manning's 'n'			
Pre-Development	0.05	0.015	
Post-Development	0.035	0.015	

Based on Figtree Hill WCMS Coefficients

4.5 **Catchment Representation**

Table 5 summarises the properties adopted to represent catchments in the pre-development and post-development scenarios. Key assumptions and clarifications that have informed these parameters include:

- Due to the abundance of rock at or near surface level a pre-development impervious percentage of 5% has been adopted.
- Pre-development catchments for Upper Canal flumes have been represented on plan only and have not been modelled. The flow rates defined in Appendix B are assumed to prevail.
- Post-development total impervious percentages include external un-developed catchments.

A catchment plan for stormwater quantity modelling is provided in **Appendix C**.

	Area (ha)		Average Slope (%)		Imperviou	Impervious Area (%)	
Catchment	Pre-Dev	Post-Dev	Pre-Dev	Post-Dev	Pre-Dev	Post-Dev	
Basin D1a	6.86	7.74	4.4	4.2	5%	70%	
Basin D1b	2.65	4.75	4.4	4.8	5%	82%	
Basin D1c	10.48	7.51	4.4	4.8	5%	82%	
Basin D1d	7.28	7.86	4.6	4.2	5%	84%	
Basin D2	9.00	8.36	4.7	4.6	5%	84%	
Basin D3	5.09	6.84	4.5	4.0	5%	81%	
Basin D4	2.12	2.20	3.3	3.4	5%	84%	
Basin D5	10.16	10.38	4.0	4.5	5%	82%	
Basin D6	7.73	7.24	5.0	3.2	5%	85%	
Basin D7	13.13	12.96	6.6	5.4	5%	74%	
Basin D9	10.02	11.67	5.5	2.5	5%	71%	
Basin D10	17.94	19.36	5.8	5.8	5%	69%	
Basin D11 ¹	-	2.62	-	8.0	-	29%	
Basin D12 ^{1,2}	-	5.73	-	7.0	-	57%	
Basin D13 ¹	-	9.34	-	6.5	-	61%	
Basin D14 ³	12.38	13.04	5.2	4.8	5%	46%	
Basin D15 ³	7.98	13.77	8.4	6.2	5%	44%	
Basin D16 ¹	-	14.37	-	7.2	-	64%	
Basin D17	1.32	1.46	6.6	6.3	5%	62%	
Basin D18 ¹	-	7.66	-	8.7	-	75%	
Basin D19 ¹	-	4.52	-	7.0	-	71%	
Basin D21	31.06	31.69	4.2	5.7	5%	76%	
Basin D23	19.65	20.07	5.9	4.7	5%	83%	
Basin D24	5.94	5.28	3.0	3.7	5%	77%	

Table 5 – Catchment Properties

1. Discharges to an existing WaterNSW flume.

2. Proposed stormwater network/basin outlet to split flow to utilise multiple adjacent existing flumes.

3. Catchment diversion to eliminate impact on an existing flume. Ultimate confluence point remains similar between predevelopment and post-development condition.

4.6 **Results and Discussion**

Estimated pre-development and post-development peak flow rates and estimated storage requirement are summarised in **Table 6** based on the modelling methodology described in the preceding Sections. Basins have been modelled with typically 1.5m to 2.0m depth of storage to account for effects of water level on outflow rates. The estimated volumes represent minimum storage requirements for land use planning purposes and is discussed in further detail in Section 6.

As demonstrated, the proposed stormwater quantity management strategy is capable of achieving performance criteria for the development, and with refinement as part of future detailed design has potential to create high amenity infrastructure connecting development and adjacent natural vegetation.

	1EY/50% AEP		1%	1% AEP		
Basin ID	Pre-Dev (m3/s)	Post-Dev (m3/s)	Pre-Dev (m3/s)	Post-Dev (m3/s)	Estimated Storage (m3)	
D : D(. ,		
Basin D1a	0.399	0.368	1.500	1.417	2,800	
Basin D1b	0.171	0.142	0.706	0.691	2,150	
Basin D1c	0.577	0.501	2.07	1.773	2,650	
Basin D1d	0.425	0.367	1.610	1.470	3,100	
Basin D2	0.504	0.382	1.880	1.860	3,300	
Basin D31	0.306	0.305	1.19	1.11	4,100	
Basin D4	N/A	N/A	N/A	N/A	N/A	
Basin D5	0.543	0.462	1.92	1.89	4,200	
Basin D6	0.456	0.356	1.74	1.56	2,850	
Basin D7	0.762	0.479	2.96	2.85	4,700	
Basin D9	0.588	0.416	2.23	2.08	3,850	
Basin D10	1.666	1.610	5.734	5.570	6,450	
Basin D11 ²	0.194	0.096	0.663	0.622	700	
Basin D12 ^{2,3}	0.336	0.332	0.939	0.818	1,950	
Basin D13 ¹	0.378	0.317	1.223	1.161	3,500	
Basin D14	0.701	0.431	2.560	2.205	4,150	
Basin D15	0.541	0.538	2.260	2.170	4,400	
Basin D16 ^{2,3}	0.468	0.288	1.537	1.518	6,700	
Basin D17	0.121	0.11	0.463	0.345	450	
Basin D18 ²	0.295	0.200	0.841	0.814	3,700	
Basin D19 ²	0.376	0.183	1.303	0.822	1,550	
Basin D21	1.360	1.170	4.90	4.72	12,550	
Basin D23	1.08	0.730	3.88	3.80	7,900	
Basin D24	0.314	0.257	1.1	0.991	2,000	
	•	•	•	•	-	

Table 6 – Detention Basin Volumes

Basin includes flow from basin D4 water quality only
 Pre-development flows based off existing WaterNSW flume data.

3. Proposed stormwater network/basin outlet to split flow to utilise multiple adjacent existing flumes.

4.6.1 Basin D4

Basin D4 is intended to perform a water quality treatment function only that integrates water sensitive urban design and landscape at the fringe between urban development and existing native vegetation. Basin D4 is envisaged to consist of a series of raingardens adjacent a meandering shared path running parallel to the adjacent creek with complimentary planting beds throughout. As part of future design development, it may be necessary for Basin D4 to provide a detention function however this will need to be considered against the performance targets of this Strategy and the vision for the project at the time of development.

Basin D4 is effectively a proof of concept for the implementation of best practice water sensitive urban design that prioritises landscape over efficiency and may be implemented in other parts of Gilead at detail design.

4.6.2 Basin D10

Basin D10 is unique in that this basin will be receiving post-development stormwater from upstream WaterNSW flumes. The design of Basin D10 has assumed that stormwater discharge from these flumes will be at pre-development flow rates considering detention is to be provided upstream of these flumes through Basin D18 and Basin D19.

4.6.3 Basin D16

Basin D16 in its current arrangement will be consolidating stormwater runoff approaching three WaterNSW flumes through one existing flume in the post-development scenario. The design of Basin D16 is a proof of concept for consolidating infrastructure along the WaterNSW Upper Canal however as part of detail design, it may be necessary to split Basin D16 or its discharge routes toward all three existing flumes as opposed to a single flume.

4.6.4 Basin D24 and Figtree Hill Interface

Basin D24 and the interface with the Figtree Hill development are to be designed in consideration of the performance targets of the Figtree Hill WCMS. There is opportunity as part of the Figtree Hill development to amend the design of Figtree Hill Basin 3B to detain part of the Gilead development that naturally falls toward this basin. Likewise, the discharge behaviour of Basin D24 is to be considered in relation to the Figtree Hill post-development control point which is understood to be located downstream at a confluence point for basins on the west side of Figtree Hill. **Appendix D** provides an initial assessment of the revised Figtree Hill stormwater strategy where Basin D24 and Figtree Hill Basin 3B form part of the post development condition.

5 Stormwater Quality Controls

5.1 **Performance Criteria**

The stormwater quality management strategy has been developed to meet the following objectives at discharge points into existing waterways which are consistent with the Figtree Hill WCMS post-development discharge pollutant removal targets:

- 90% reduction in average annual gross pollutant (GP) loads.
- 85% reduction in average annual total suspended solid (TSS) loads.
- 70% reduction in average annual total phosphorus (TP) loads.
- 55% reduction in average annual total nitrogen (TN) loads.

It is noted that the proposed targets exceed the minimum thresholds for new developments as specified in the Campbelltown Engineering Design Guide for Development which are as follows:

- Undefined reduction in average annual GP loads.
- 80% reduction in average annual TSS loads.
- 45% reduction in average annual TP loads.
- 45% reduction in average annual TN loads.

The higher pollutant removal targets proposed for Gilead aim to minimise the impact on the Hawkesbury-Nepean River and its tributaries and minimise the impact on waterways and the habitats they support. The proposed targets are envisaged to not only provide enhanced environmental benefits but contribute toward the Lendlease Communities vision of happy, healthy, and sustainable living for the residential community.

For sub-catchments that will discharge toward the existing WaterNSW Upper Canal, The Upper Canal Guidelines do not provide specific targets and the following performance criteria has been adopted for discharge toward existing flumes:

Where a flume outlet discharges stormwater through Gilead development.

- 90% reduction in average annual GP loads.
- 40% reduction in average annual TSS loads.

Where a flume outlet discharges stormwater directly to an existing waterway.

As per above waterway discharge targets.

The targets where a flume outlet discharges stormwater through subsequent Gilead development are considered appropriate as they aim to minimise blockage potential of the flume as a priority while remaining suspended solids and dissolved nutrients will be removed as part of consolidated water quality basins downstream of the flume, thereby reducing stormwater basin maintenance burden, and improving sustainability of the stormwater quality system.

5.2 Stormwater Quality Management Strategy

The stormwater quantity management strategy adopts a typical treatment train to demonstrate a functional outcome that does not rely on a rigid scheme to be effective. It is intended that the treatment train will be further optimised as part of Development Applications adopting this strategy as a guide and supplementing where appropriate, alternative treatment options to meet performance targets. It is noted that the higher pollutant removal targets to be adopted will directly

translate into a treatment train that is more robust than a typical business as usual approach even where a typical treatment train is adopted.

The typical treatment strategy incorporates rainwater re-use tanks on every residential lot, gross pollutant traps at each stormwater discharge point and tertiary treatment via vegetated bioretention basins. To protect water quality infrastructure and minimise the size of proprietary treatment devices, it will be necessary to install splitter pits upstream of the treatment train to divert high flows directly to detention storages.

Figure 12 – Stormwater Quality Infrastructure Plan

Locations and arrangement subject to detail design.

5.3 Modelling Methodology

The stormwater quality management strategy has been assessed using the MUSIC v6.3 software package which is the industry standard software for modelling water quality and water sensitive urban design outcomes.

Post-development catchment boundaries adopted for modelling are like those that have been adopted for stormwater quantity modelling but have been further broken down into land use categories to appropriately model pollutant quantities and the proposed treatment train.

Catchment hydrology, pollutant generation and treatment device parameters adopted are detailed in the following sections and have been developed based on:

- Figtree Hill WCMS.
- NSW MUSIC Modelling Guidelines.
- Third party data where applicable.

It is noted that Campbelltown City Council has not released a MUSIC modelling guideline or MUSIC Link file to standardise modelling in the LGA and a first principles approach to modelling has been adopted for this strategy.

Figure 13 – Sample Extract of MUSIC Modelling Layout

5.3.1 Catchment Hydrology

Rainfall data across numerous weather stations has been assessed with the rainfall data detailed in **Table 7** and monthly Potential Evapotranspiration (PET) data in **Table 8** adopted for modelling purposes. These rainfall parameters have been assessed based on:

- Proximity to the subject site (the closer the more relevant).
- Completeness of data (minimal to no data gaps)
- Period of data collection (ideally 40 years or more)
- Period appropriate for modelling typical climate conditions (generally a 10-year period with no extreme dry or wet conditions)
- Appropriate timestep for modelling evaporation and infiltration effects accurately (industry standard for water quality modelling is 6-minute).

Table 7 – MUSIC Model Rainfall Data

Variable	Adopted Value
Weather Station	Liverpool (Whitlam Centre 67035)
Rainfall Period	1967-1977
Timestep	6-minute

Table 8 – MUSIC Model Monthly PET

Month	Protect PET (mm)
January	165
February	125
March	115
April	65
Мау	55
June	45
July	45
August	60
September	85
October	120
November	145
December	155

Catchment rainfall-runoff and groundwater properties for all catchment types has adopted the parameters in **Table 9** which have taken into consideration to the typical soil profiles within Gilead which are a mix of silty clays, sandy clays, shaly clays, weathered sandstone, and shale.

Table 9 – MUSIC Catchment Rainfall-Runoff Parameters

Parameter	Adopted Value		
Impervious Areas			
Rainfall Threshold	1.4mm		
Pervious Areas			
Soil Storage Capacity (mm)	90		
Initial Storage (% of capacity)	25		
Field Capacity (mm)	70		
Infiltration Capacity Coefficient – a	150		
Infiltration Capacity Coefficient – b	3.5		
Groundwater			
Initial Depth (mm)	10		
Daily Recharge Rate (%)	25		
Daily Baseflow Rate (%)	10		
Daily Deep Seepage Rate (%)	0		

5.3.2 Catchment Representation

Post development catchments have been defined by the following general urban typologies:

- Roads
- Low Density
- Medium Density
- Open Space
- External (Rural)

It is recognised that there will be other land uses dispersed throughout the site such as schools, town centre and infrastructure sites however the location of such land uses may be subject to change and will not vary significantly in impervious area compared to Low Density as modelled in this strategy to meaningfully affect feasibility of the strategy. Further, such land uses may adopt on lot stormwater management which will be an improvement on this Strategy. In addition, post-development open space has been sub-categorised into active and naturalised open space which has defined whether open space has additional pollutant generation potential and therefore whether the open space has been modelled as Open Space or Rural category. It is envisaged that naturalised open space will retain vegetation and existing soils with minimal construction works and, in most cases, will passively provide water quality improvement through the removal of existing agriculture as a land use. **Figure 14** and **Figure 15** provide samples of the delineation between active open space and naturalised open space respectively.

Figure 14 – Example of Active Open Space

Figure 15 – Example of Naturalised Open Space

Table 10 details a typical development land use breakdown adopted to generate nodes suitable for MUSIC modelling. The proportions of each land use per basin catchment have been based on an initial development masterplan reflective of a typical residential development. While there may be changes in land use proportions and areas in future, such changes are unlikely to be significant to meaningfully impact This Strategy, especially where an Urban Development zoning is adopted.

Land Use	Sub Catchment	Adopted Impervious	Comments	
Roads	N/A	90%		
Low Density	Roof (to rainwater tank)	100%	Roof assumed to represent 60% of total land use area. 50% of roof assumed to contribute to a rainwater tank.	
	Roof (bypass)	100%	Roof assumed to represent 60% of total land use area. 50% of roof assumed to contribute to a rainwater tank.	
	Remaining Lot Area	50%	Total percentage of low-density land use imperviousness equates to 80%	
Medium Density	Roof (to rainwater tank)	100%	Roof assumed to represent 80% of total land use area. 50% of roof assumed to contribute to a rainwater tank.	
	Roof (bypass)	100%	Roof assumed to represent 80% of total land use area. 50% of roof assumed to contribute to a rainwater tank.	
	Remaining Lot Area	50%	Total percentage of low-density land use imperviousness equates to 90%	
Open Space	N/A	20%	Reduced imperviousness adopted on the basis that most of the open space is to incorporate natural bushland features augmented with walking trails.	
External (Rural)	N/A	0%		

Table 10 – MUSIC Node Details Summary

5.3.3 Catchment Pollutant Generation

Catchment pollutant generation estimates have been based on **Table 11** base flow and storm flow parameters adopting stochastic generation.

		Total Suspended Solids (mg/L-log10)		Total Phosphorus (mg/L-log10)		Total Nitrogen (mg/L-log10)	
Land Use	Mean / Standard Deviation	Base Flow	Storm Flow	Base Flow	Storm Flow	Base Flow	Storm Flow
Rural	Mean	1.15	1.95	-1.22	-0.66	-0.05	0.30
	Standard Deviation	0.17	0.32	0.19	0.25	0.12	0.19
Road	Mean	1.20	2.43	-0.85	-0.30	0.11	0.34
	Standard Deviation	0.17	0.32	0.19	0.25	0.12	0.19
Roof	Mean	N/A	1.30	N/A	-0.89	N/A	0.30
	Standard Deviation	N/A	0.32	N/A	0.25	N/A	0.19
Residential	Mean	1.20	2.15	-0.85	-0.60	0.11	0.30
	Standard Deviation	0.17	0.32	0.19	0.25	0.12	0.19
Open Space	Mean	1.20	2.15	-0.85	-0.60	0.11	0.30
	Standard Deviation	0.17	0.32	0.19	0.25	0.12	0.19

5.3.4 Treatment Node Properties

5.3.4.1 Rainwater Tanks

Rainwater tanks have been modelled assuming the installation of a 2.5kL tank on each development lot but modelled in MUSIC with 2.0kL capacity taking into consideration storage inefficiencies.

Rainwater tank re-use rates adopted assume 0.1kL/day internal use and 25.0kL/year as PET-Rain.

5.3.4.2 Gross Pollutant Traps

Vortex type gross pollutant traps have been assumed to be adopted allowing for treatment up to the 3-month storm event. Larger storm events are assumed to bypass via splitter pit and be directed to detention basins. Given the range of proprietary products available this strategy has adopted the following treatment effectiveness for gross pollutant traps which is typical for industry leading units available in the market.

- 98% GP removal.
- 70% TSS removal for inflow concentrations greater than 75mg/L.
- 30% TP removal for inflow concentrations greater than 0.5mg/L.
- 0% TN removal.

While not a performance target, it is part of this strategy that oil pillows will be installed in GPTs to capture hydrocarbon pollutants.

Figure 16 – Typical Vortex Type GPT Concept

Source: Rocla CDS Unit Technical Summary

5.3.4.3 Bio-Retention Basins

The predominant means of suspended solids and nutrient removal is to be through the construction of bio-retention basins. Bio-retention basins are considered most appropriate for the Gilead site due to constraints in the existing topography and shallow depth of rock that render the implementation of wetlands or ponds unfeasible. Bio-retention basins are to incorporate an engineered filtration media that promotes nutrient removal when appropriately vegetated. Bio-retention basins have been modelled in MUSIC adopting the parameters detailed in **Table 12**. A typical bio-retention basin arrangement is presented in **Figure 17**.

Parameter	Adopted Value		
High Flow Bypass	3-month flow rate		
Extended Detention Depth	300mm		
Saturated Hydraulic Conductivity	125mm/hr		
Filter Depth	500mm		
TN Content of Filter Media	800mg/kg		
Orthophosphate Content	40mg/kg		
Exfiltration Rate	0mm/hr		
Base liner	Yes		
Vegetation	Effective nutrient removing plants assumed		

Table 12 – Bio-Retention Basin Parameters

Figure 17 – Typical Bio-Retention Basin Arrangement

Source: Stormwater Biofiltration systems Adoption Guidelines, June 2009, FAWB.

5.3.4.4 Alternative Treatment Options

The Strategy provided adopts a typical water quality treatment train to demonstrate that a functional outcome to meet performance targets can be achieved. This should not preclude the adoption of alternative treatment options that may be of benefit to the project and should be considered as part of a Development Application process for suitability within the site-specific catchment properties. Some current technologies that may be considered in future as part of detail design include but are not limited to:

Roadside planter beds (with or without bio-filtration media)

Such systems differ from traditional verge planting by occupying parts of the road carriageway allowing for larger deep soil zones and generally increased canopy cover. As these systems have a direct connection to gutter stormwater flows, there is the increased opportunity for vegetation to benefit from passive irrigation leading to increased vegetation health and visual amenity. Such systems however generally require increased maintenance compared to positioning vegetation within the verge and have greater potential to accelerate road pavement failure.

Roadside planter beds can incorporate bio-filtration media as part of the soil system however the effectiveness and cost benefit of this initiative is not as efficient as a centralised water quality basin and generally does not lead to better vegetation outcomes overall.

Deep soil zones may also not be practical for The Site due to the shallow depth of rock throughout.

Figure 18 – Example Roadside Planter Concept

Source: Western Sydney Aerotropolis (Initial Precincts) Stormwater and Water Cycle Management Study, December 2021, Sydney Water Corporation

Roadside swales (with or without bio-filtration media)

Such systems are like roadside planter beds but are applied for longer sections of a road and perform a greater stormwater flow conveyance function. As these systems occupy more of the road carriageway than planter beds, they cannot easily be accommodated between parking modules and are therefore typically positioned between the parking lane and verge or to replace the road verge along roads directly adjacent open spaces. These systems provide the same benefits and risks as roadside planter beds but are also more difficult to apply in coordination with pedestrian pathways and vehicle driveways.

Roadside swales can also incorporate bio-filtration media as part of the soil system and due to their relative mass, they may provide more efficient and cost-effective water quality treatment compared to planter beds.

Figure 19 – Example Roadside Swale Concept Source: Sanctuary Drive, Rouse Hill, Google Street View.

Large scale vegetation regeneration of previous agricultural land offsetting net development pollutant generation.

As part of the Gilead development, large portions of agricultural land are to be revegetated and repurposed as naturalised open space. While on a small scale such improvements may be negligible in water quality improvements, at a larger scale such as is proposed, the reductions in agriculture pollutants and the increased passive water quality improvement potential of the revegetated land can facilitate on its own improved water way health.

This Strategy does not suggest that revegetation alone can wholly compensate for the increase in development generated pollutants or that such land can be used for the sole purpose of water quality treatment, however there is opportunity for revegetation initiatives to partially contribute to water quality and environmental improvements e.g. revegetation of land may provide greater net benefit than the land disturbance and import or foreign material to construct traditional entire water quality systems.

Figure 20 – Example Revegetation Environmental Improvements Source: Greening Australia, River Torrens Revegetation, Adelaide

Proprietary filtration tree pits.

Such systems are similar in principle to roadside planter beds but are provided as a packaged system by private enterprise. These systems can provide better treatment performance and convenience but are generally more costly to implement and can be more costly to maintain in the long term. The growth potential of vegetation is also limited by the practical limitations of the concrete containers that these systems typically adopt.

Figure 21 – Example Proprietary Tree Pit Concept Source: Filterra Technical Design Guide, Ocean Protect

On-lot raingardens.

On-lot raingardens are like the bio-retention basins proposed but are implemented on a smaller scale at each individual land holding. The primary benefits are the capture of pollutants close to the source and reduced burden on public assets. These systems however are reliant on adequate maintenance by numerous private owners and where a water quality system is reliant on their use, requires burdens on the title of land to ensure their implementation.

Generally, the inability to control the implementation of such systems on a broad scale leads to these assets not forming part of a masterplan development strategy.

Complimentary pressurised systems (e.g. harvesting or recirculation).

Pumped systems accompanied by storage can be adopted to improve the performance of a passive system through either the extraction of treated stormwater for reuse or recirculating treated stormwater through the water quality system.

In the case of stormwater harvesting, this typically requires relatively large stormwater retention basins or tanks which for The Site may not be appropriate due to the presence of shallow rock. Such systems also require a pressurised reticulation network to transport harvested rainwater to the point of use which can be cost prohibitive.

With respect to recirculation systems, these have potential to allow for reduced basin footprints but are more expensive to maintain and have reduced reliability due to requiring a pump to function. Adoption of a pumped system however generally allows for reduced excavation.

Due to the broad scope of this strategy, the variability in catchment properties throughout the site and the relative unknown sub surface conditions in general it is not reasonable to rely on alternative treatment options at this stage of development planning.

Following the lodgement of the Planning Proposal, Lendlease intend to work with Campbelltown Council explore opportunities for alternative treatment options that achieve both the necessary performance outcomes and Council's maintenance requirements. Following resolution on preferred alternative strategies with Council, it is expected that appropriate controls can be incorporated within the Development Control Plan that will support the detailed masterplan to be established for Gilead.

5.4 Results and Discussion

Estimated post-development pollutant reductions and estimated bio-retention basin filter area requirement are summarised in **Table 13** based on the modelling methodology described in the preceding Sections. The estimated treatment areas represent minimum area requirements for land use planning purposes and is discussed in further detail in **Section 6**.

As demonstrated, the proposed stormwater quality management strategy is capable of achieving performance criteria for the development and with refinement as part of future detailed design has potential to create high amenity infrastructure connecting development and adjacent natural vegetation.

Control Node	GP Removal (%)	TSS Removal (%)	TP Removal (%)	TN Removal (%)	Bio – Retention System Filter Area (m ²)
Performance Target	90.0	85.0	70.0	55.0	
Basin D1a	99.6	90.9	71.8	55.7	890
Basin D1b	99.9	91.4	70.0	56.0	620
Basin D1c	99.6	91.3	72.2	55.9	980
Basin D1d	99.5	90.7	71.4	55.5	1,025
Basin D2	99.5	89.7	70.4	55.4	1,090
Basin D3	99.7	91.6	73.1	55.9	930
Basin D4	100.0	93.2	74.2	56.9	260
Basin D5	99.8	90.5	70.2	55.5	1,350
Basin D6	99.9	91.6	71.8	55.7	945
Basin D7	98.7	88.8	70.0	56.0	1,685
Basin D9	99.0	89.7	71.4	56.3	1,520
Basin D10 ^{1,3}	99.1	90.4	71.0	56.3	3,555
Basin D11 ¹	100.0	99.6	74.7	55.6	130
Basin D12 ¹	100.0	95.8	72.9	56	465
Basin D13 ¹	99.5	95.3	71.5	55.3	850
Basin D14 ¹	99.3	94.9	71.9	56	825
Basin D15 ¹	99.3	99.0	74.9	56.9	625
Basin D16 1	99.8	93.3	71.4	55.0	1,330
Basin D17 1	100.0	93.9	71.0	55.2	100
Basin D18 ²	97.7	N/A	46.1	N/A	N/A
Basin D19 ²	98.3	N/A	46.5	N/A	N/A

Table 13 – MUSIC Modelling Results

Basin D21	98.4	88.1	70.5	55.8	4,120
Basin D23	99.4	90.1	71.1	55.3	2,610
Basin D24	99.9	92	71.9	56.4	690

1. Bio-retention basin with external un-developed catchment.

Basin discharging to an existing WaterNSW flume and subsequently to a downstream consolidated bio-retention basin.
 Bio-retention basin receiving upstream post-development flow from existing WaterNSW flume(s).

4. Sizing of basins to be confirmed during detail design

5.4.1 **Basin D24 and Figtree Hill Interface**

Basin D24 and the interface with the Figtree Hill development are to be designed in consideration of the performance targets of the Figtree Hill WCMS. There is opportunity as part of the Figtree Hill development to amend the design of Figtree Hill Basin 3B to provide treatment of part of the Gilead development that naturally falls toward this basin. Appendix D provides an initial assessment of the revised Figtree Hill stormwater strategy where Basin D24 and Figtree Hill Basin 3B form part of the post development condition.

i.

6 Stormwater Infrastructure Land Use Planning

A key outcome of this Strategy is to define a functional stormwater management strategy that is capable of supporting the proposed Gilead development. Due to numerous site constraints it is likely stormwater infrastructure will shift as part of detailed design to respond to these constraints and this Strategy will form a guide on the overarching objectives to be achieved as part of such refinements. **Table 14** summarises the estimated land requirements to implement this Strategy which demonstrates that the plan areas provided contain sufficient area for the estimated infrastructure footprints plus contingency.

This infrastructure is proposed to be located within land identified for urban development and in areas marked for conservation that are currently clear of any significant vegetation due to previous agricultural uses. Where the infrastructure is located within conservation areas, an appropriate level of revegetation is to occur to ensure that it provides a stormwater management function as well as a contribution towards the conservation outcomes in Gilead.

Basin ID	Modelled Surface Area (Bio-retention + OSD) (m ²)	Total Infrastructure Area Required (Modelled Surface Area + 50%) (m²)	Surface Area Provided for Capability Assessment (m²)
Basin D1a	2,990	4,500	7,000
Basin D1b	2,120	3,180	3,400
Basin D1c	2,780	4,170	4,650
Basin D1d	3,525	5,300	8,150
Basin D2	3,690	5,600	11,150
Basin D3	4,730	7,100	9,320
Basin D4	260	400	N/A
Basin D5	5,150	7,800	10,700
Basin D6	3,345	5,100	10,090
Basin D7	5,885	8,900	11,300
Basin D9	5,420	8,200	11,590
Basin D10	8,455	12,700	16,120
Basin D11	630	1,000	2,830
Basin D12	1,965	3,000	3,440
Basin D13	3,350	5,100	8,040
Basin D14	4,625	7,000	7,640
Basin D15	3,625	5,500	5,600
Basin D16	6,030	9,100	9,100
Basin D17	450	700	3,870
Basin D18	2,750	4,200	6,500
Basin D19	1,250	1,900	3,530
Basin D21	13,120	19,700	34,460
Basin D23	8,610	13,000	19,230
Basin D24	2,390	3,600	10,170
Total	97,145	146,750	217,880

Table 14 – Stormwater Infrastructure Land Use Summary

1. The additional 50% area allowance is to account for batters, maintenance tracks and the like to create functional infrastructure.

7 Stream Erosion Index

To estimate potential impact on existing waterways due to changes in flow frequency behaviour, an assessment of Stream Erosion Index (**SEI**) has been undertaken. The following methodology has been adopted to calculate post-development SEI with a target SEI value of 1.0 or less (no impact).

- Critical stream forming flow has been estimated based on calculated pre-development 50% AEP flow rate multiplied by 50%. Critical stream forming flow indicates the threshold at which mobilisation of bed material and erosion of banks begins to occur.
- Mean pre-development annual runoff volume that exceeds the estimated critical flow has been determined through MUSIC software. With a SEI target of 1.0, this mean annual volume becomes the target in the post-development scenario.
- Mean post-development annual runoff volume that exceeds the estimated critical flow has been determined through MUSIC software. Detention and water quality improvement infrastructure has been modelled as part of the post-development scenario.
- SEI has been determined by dividing post-development mean annual runoff volume by pre-development mean annual runoff volume from the above steps.

Waterway	Calculated 50%AEP Pre-Development Peak Flow Rate	Estimated Critical Stream Forming Flow Rate	Mean Annual I Above Cri (ML/		SEI
	(m ³ /s)	(m ³ /s)	Pre- Development	Post- Development	
4A	0.81	0.405	5.04	4.69	0.93
ЗA	0.13	0.065	0.71	0.00	0.00
2A	6.85	3.426	29.80	17.30	0.58
1A	1.57	0.786	9.73	5.75	0.59
1B	0.46	0.228	2.70	1.38	0.51
1C	1.67	0.835	12.40	6.14	0.50
1D	1.36	0.680	14.20	11.00	0.77
1E	1.37	0.683	9.80	8.52	0.87

Table 15 – Stream Erosion Index Assessment with Detention

Waterway IDs and locations as per Figure 3.

As demonstrated in **Table 15** the implementation of the proposed stormwater management strategy will achieve an SEI of less than 1.0 for all existing watercourses indicating that it is very unlikely the Gilead development will generate accelerated changes in the geomorphology of these watercourses where this Strategy is in place.

7.1 Reduced Detention Storage Sensitivity

As part of detail design there is opportunity to adopt a reduced detention strategy that aims to detain environmental impact flows (e.g. 50% AEP) only while runoff from greater storm events is permitted to bypass. Typically a reduced detention strategy would result in 50% less storage volume than traditional detention strategies and this outcome has been modelled as a sensitivity scenario to estimate potential geomorphology impacts in frequent storm events. Results of this sensitivity is provided in **Table 16** and indicates that a reduced basin strategy may have an impact on some existing waterways (above an SEI of 1.0) but a minor impact only (SEI less than 3.5). On this basis, a reduced detention strategy may be justified provided safety criteria can be achieved. Further, a reduced detention storage requirement would improve the feasibility of implementing a distributed stormwater discharge regime along edge roads that may provide improvements to the passive irrigation of adjacent natural waterways and minimise the localised impact of concentrated discharge.

Waterway	Calculated 50%AEP Pre-Development Peak Flow Rate	Estimated Critical Stream Forming Flow Rate	Mean Annual F Above Cri (ML/	tical Flow	SEI
	(m ³ /s)	(m ³ /s)	Pre- Development	Post- Development	
4A	0.81	0.405	5.04	6.54	1.30
ЗA	0.13	0.065	0.71	0.00	0.00
2A	6.85	3.426	29.80	24.60	0.83
1A	1.57	0.786	9.73	8.45	0.87
1B	0.46	0.228	2.70	2.12	0.79
1C	1.67	0.835	12.40	8.62	0.70
1D	1.36	0.680	14.20	14.10	0.99
1E	1.81	0.905	9.80	9.64	0.98

Table 16 – Stream Erosion Index Assessment with Reduced Detention

Waterway IDs and locations as per Figure 3.

8 **Conclusions and Recommendations**

This stormwater management strategy report has demonstrated that the Gilead development can be supported by stormwater control infrastructure to adequately achieve statutory performance targets to facilitate the development.

The proposed development is positioned above existing 1% AEP flood extents and generally above the PMF event such that additional flood mitigation works beyond stormwater peak flow management up to the 1% AEP will not be necessary. In addition, due to landform constraints, bridge crossings are likely to be elevated above the PMF event. A flood evacuation strategy is unlikely to be necessary for The Site due to its elevation above flood risks.

Control of post-development peak flows is to be managed through detention basins, and water quality improvements are to be controlled through a system of rainwater tanks, gross pollutant traps and bio-retention basins. Specifically, the performance requirements of the WaterNSW Upper Canal can be achieved with refined performance checks to be undertaken at detail design.

Based on the stormwater quantity and quality modelling, approximate land use requirements have been calculated and compared to plan areas reserved in the masterplan which confirms that spatially the stormwater management strategy can be accommodated.

The following opportunities have been identified to improve the fundamental strategy detailed in this report. It is recommended that these opportunities be investigated as part of detailed design to ensure high amenity development outcomes are achieved and should form part of the Development Control Plan to be adopted for the land and inform a local Planning Agreement with Council to confirm delivery.

- An Urban Development land use zoning is recommended to provide flexibility in stormwater infrastructure positioning and size which will allow infrastructure to be designed that responds to the site-specific constraints of the infrastructure.
- The Figtree Hill Basin 3B design could be updated to include part of the Gilead development that naturally falls toward this basin.
- Alternative water sensitive urban design solutions could be considered that may be more beneficial than standard practice such as:
 - Roadside planter beds (with or without bio-filtration media)
 - Roadside swales (with or without bio-filtration media)
 - Large scale vegetation regeneration of previous agricultural land offsetting net development pollutant generation.
 - Proprietary filtration tree pits
 - On-lot raingardens
 - Complimentary pressurised systems (e.g. recirculation or harvesting).
- The impact of a reduced detention strategy should be investigated to determine if detention of environmental impact flows (e.g. 50% AEP event) only will have detrimental impacts on existing waterways and downstream lands. A reduced detention basin strategy has potential to minimise net environmental impact through reduced land disturbance, vegetation clearing and rock excavation.

Appendix A Flood Assessment

Rhelm Pty Ltd

ABN : 55 616 964 517 Level 1, 50 Yeo Street Neutral Bay NSW 2089 Australia contact@rhelm.com.au

9 June 2022

Our ref: J1649

Lauren Connors Enspire Solutons Pty Ltd 1302/83 Mount Street North Sydney NSW 2060

Dear Lauren,

RE: Mount Gilead Preliminary Flood Modelling

Preliminary flood modelling has been undertaken for Mount Gilead to provide an understanding of the constraints and opportunities associated with development of the site with respect to flooding.

This letter report details the following elements of this preliminary study:

- Background:
- Methodology:
- Outputs; and,
- Limitations and Assumptions.

Background

Rhelm Pty Ltd (Rhelm) has been engaged by Enspire Solutions Pty Ltd (Enspire) on behalf of Lendlease Communities (Lendlease) to develop a flood constraints study to inform part of a Stormwater Management Strategy. The Stormwater Management Strategy forms part of a documentation package that will facilitate a Planning Proposal to rezone land within Lendlease's landholding at Gilead.

The objective of this study is to provide a high level understanding of the constraints and opportunities associated with development of the site with respect to flooding from the local upstream catchment as well as the Nepean River.

Study Area

The site is generally bounded by Appin Road to the east, the Nepean River in the west, Menangle Creek to the north and approximately Leafs Gully to the south. Several watercourses run through the site, discharging north into Menangle Creek and eventually the Nepean River. This includes Woodhouse Creek, Nepean Creek as well as other minor unnamed watercourses. The WaterNSW Upper Canal roughly bisects the site and would remain untouched within its cadastral boundaries.

The current site is largely cleared open space, with remnant pockets of denser vegetation, typically adjacent to creeks and watercourses.

It is noted that in general the watercourses within the study area have steep incised banks with relatively dense vegetation.

The study area is shown **Figure 1** below.

Data Review

The primary data inputs / sources for this study were:

- LiDAR data provided by Lendlease dated 2020 which covered the study area at a 3m resolution (provided as part of the previous study).
- Indicative Masterplan supplied by Enspire 8 June 2022.
- ARR Data Hub, which was used to source rainfall intensity and temporal pattern data.
- Australian Rainfall and Runoff 2019 (ARR2019) Guidelines, which were used to inform the selection of appropriate hydrological and hydraulic model parameters.
- NearMap aerial imagery, which was used to determine subcatchment impervious areas and to delineate land uses (for the purposes of applying model roughness).

Figure 1 – Study Area

Hydrological Model Development

The hydrological modelling has been completed using the hydrological model in XP-RAFTS. The hydrology has been based on Australian Rainfall and Runoff 2019 (ARR2019) with the parameters extracted from the ARR DataHub shown in **Table 1** and inputs to the model and the data sources for those inputs are summarised in **Table 2**.

The subcatchment delineation is shown in Figure 2.

Table 1 – ARR DataHub Metadata

Parameter	Value	
Storm Initial Losses (mm)	18 (NSW adjusted loss)	
Storm Continuing Losses (mm/h)	2.4 (NSW adjusted loss)	
River Region - Division	South East Coast (NSW)	
River Region	Hawkesbury River	
Point Temporal Pattern Label	East Coast South	
Version	2016_v2	

Table 2 – Hydrological Model Input Data

Parameter	Data Source
Area and slope	LiDAR data is available for full catchment and was used for this mapping.
Percentage impervious	Percentage impervious areas are largely a factor of development intensity and were determined from aerial imagery (NearMap, March, 2022). Adopted values were:
	 Open Space 2% Light Vegetation 1% Medium Vegetation 0%
	 Medium Vegetation Medium Density Residential Infrastructure 40%
Roughness	Values have been determined from an examination of aerial imagery and have been largely dependent on land use. Roughness values adopted were as per the hydraulic model (see Table 3).
Runoff routing	Routing refers to the transfer of flows from one sub-catchment to another. This routing can be done in XP-RAFTS through either specifying a lag time between sub-catchments (10 minutes for example) or inputting a typical cross section, roughness and length and allowing XP-RAFTS to compute the lag time based on the flow volume. For this model, the lag approach has been adopted.
Rainfall losses	Under ARR2019, rainfall parameters for hydrological modelling are all available from the ARR Data Hub have been downloaded directly from this website. Probability neutral losses have been adopted, and in the absence of calibrated site losses, the NSW adjusted losses from the Data Hub have been adopted as noted in Table 1 .

Figure 2 – Subcatchment Delineation

Hydraulic Model Development

The hydraulic modelling has been completed using TUFLOW. The TUFLOW model details are shown in **Figure 3**.

Inputs to the model and the data sources for those inputs are summarised in Table 3.

Parameter	Data Source
Model Area	The full upstream catchment area has been included in the hydraulic model. This was feasible due to the relatively small size of the catchment, and allows for the full extent of the various creeks and channels to be included.
DEM	The LiDAR data provided by LendLease in 2020 was utilised as the DEM. This data was supplied in a post-processed format at a 3m grid cell resolution.
Grid Cell Resolution	The variety of creeks and channels within the study area require a grid cell resolution fine enough to appropriately their conveyance. A grid cell of 3x3 metres was adopted for this preliminary modelling which provided a reasonable balance between run times and terrain representation.
Roughness	Roughness values extents were determined based on land use mapping and aerial photography, with reference made to ARR Project 15. The Manning's 'n' values adopted were:
	 Open Space 0.035 Light Vegetation 0.045 Medium Vegetation 0.065 Medium Density Residential 0.350 Infrastructure 0.025
	A lot averaged high roughness value has been adopted for residential (and to a lesser extent, infrastructure) to allow for buildings, structures and fences onsite that have not been explicitly mapped and accounted for in the model.
1D elements	The model is a pure 2D model and does not contain any 1D elements.
Inflows	Inflows were applied to the hydraulic model via SA polygons utilising standard SA polygons, whereby flows are applied to the lowest cell within the polygon. The SA polygons mirrored the subcatchment breakdown shown in Figure 2 .
Downstream Boundary	The downstream boundary of the model is the Nepean River. No allowance for Nepean River flooding has been made. The downstream boundary incorporates some nominal level of flow in the Nepean River (that is, the river is not assumed to be dry), by adding 0.1m to the DEM heights. The DEM levels represent the river surface at the time the LiDAR was flown. This flow is fully contained within the riverbanks, and does not influence upstream flood behaviour.

Table 3 - Hydraulic Model Input Data

Figure 3 – TUFLOW Model Setup

Note: Areas without a roughness zone in the figure above have been classed as open space.

Modelled Flood Events

All modelling has been undertaken in accordance with ARR2019.

For the annual exceedance probability (AEP) event modelling, the full set of ensemble temporal patterns was run in the hydrological model for durations from 15 minutes to 12 hours. Critical durations for the study area were determined from the RAFTS model, with these selected durations then run in the hydraulic model (for all 10 temporal patterns).

PMF modelling was undertaken using the Generalised Short Duration Method (GSDM) as per the ARR2019 guidance for a catchment of this size.

The critical durations for each event were:

- 50% AEP 360-minute
- 1% AEP 60- and 120-minute
- PMF 30- and 60-minute

The results were then processed to:

- Extract the median plus one event from the peak water levels from the 10 temporal patterns for each duration, and
- Determine the maximum results from the set of median results.

Existing Flood Behaviour

Peak flood depths, with the proposed development extents overlaid, are attached to this letter report, and are shown in:

- RG-00-01 50% AEP
- RG-00-02 1% AEP
- RG-00-03 PMF

The results show that under existing conditions, due to the highly incised nature of the local creeks and channels, that flows are typically well contained throughout the study for events up to and including the PMF.

The exception to this is some minor overland flowpaths in the south-west of the site that drain directly to the Nepean River. The depths of these flowpaths are typically 0.1m - 0.2m in the 50% AEP and 1% AEP, but increase to 0.6m in the PMF. These flowpaths are proposed to be managed through a pit and pipe system in the post-development scenario.

Nepean River Flood Behaviour

The site lies adjacent to the Nepean River, and will be subject to some degree of riverine flooding.

As part of the *Greater Macarthur Water Management Report*, prepared for the Department of Planning and Environment by GHD in 2015, flood modelling of the Nepean River upstream of Menangle Weir was undertaken for the 50%, 5% and 1% AEP events, and the PMF event.

Whilst electronic data of this modelling was not available, the figures from the report (reproduced below in **Figure 4**) indicated that the peak Nepean River levels are in the order of:

- 78 85mAHD in the 1% AEP; and,
- 80 90mAHD in the PMF.

Figure 4 – Nepean River Flooding (GHD, 2015)

Limitations and Assumptions

This assessment has been undertaken in accordance with the latest industry guidelines, namely ARR2019. However, the assessment is preliminary, and the following should be noted:

- No calibration, validation, sensitivity testing or ground truthing have been undertaken.
- All model parameters are as per typical values noted in ARR2019 and have not been adjusted for this catchment area.
- A detailed survey of creeks and channels within the study area is currently being undertaken, and once available, can be used to confirm the DEM used in the TUFLOW model and the resulting flood behaviour.
- No flooding of the Nepean River has incorporated in this assessment. The results presented are for local catchment flooding only.
- The LiDAR data underlying the model typically has a vertical accuracy of 0.1 0.3m. In the absence of ground survey to confirm LiDAR levels, or calibration / validation to confirm flood levels, a similar level of accuracy should be assumed for the reported preliminary results.
- Modelling of flood flows near the Upper Canal, while roughly represented in the LiDAR ground level data, does not incorporate any of the existing cross drainage structures. It is not expected that these cross-drainage structures would significantly impact the creek flows shown in these results. Future flood modelling will take this into account.

If you have any questions concerning this report or the attached maps, please do not hesitate to contact me.

Sincerely,

Luke Evans Senior Engineer.

Scale : 1:20,000@A3 Date : 7 June 2022 Revision : A Created by : LRE Coordinate System : MGA 2020/56

Legend

Model Area

Subject Site

RG-00-01 Mount Gilead Prelminary 50% AEP Depths and Extents

Proposed Masterplan Development Regions

Scale : 1:20,000@A3 Date : 7 June 2022 Revision : A Created by : LRE Coordinate System : MGA 2020/56

Legend

Model Area

Subject Site

Proposed Masterplan Development Regions

RG-00-02 Mount Gilead Prelminary 1% AEP Depths and Extents

Scale : 1:20,000@A3 Date : 7 June 2022 Revision : A Created by : LRE Coordinate System : MGA 2020/56

Legend

Model Area

Subject Site

Proposed Masterplan Development Regions

RG-00-03 Mount Gilead Prelminary PMF Depths and Extents

Appendix B Upper Canal Flume Data

Mt Gilead Drainage information

The new return period should be above 100 year flood. The cross drains at the location should be the addition of whatever was there before the drainage project along with the new drains in the rightmost column, otherwise the upstream berm was increased where the 100year flood criteria was not met.

No. and size of additional/replaced drain		Increase upstream berm 150mm		1 x 700 half pipe			1 x 700 half pipe
Action	Repair ^	Repair, Supplement	Repair only	Repair, Supplement	Repair only	Repair only	Repair, Supplement
Return Period before drainage project	above 100 year	32.78520645	above 100 year	57.84700973	above 100 year	above 100 year	59.32066745
Significance	Moderate	Moderate	Moderate	Exceptional	Moderate/Intrusive	Moderate	High
Size before drainage project	1000 dia	1000 dia	600×600	500 dia	800 dia + 100 high walls	1200 dia	600x450
Shape	Half pipe	Pipe	Box	Pipe	Half pipe	Pipe	Box
Material	Steel	Steel (cement lined)	Steel	Steel	Steel	Steel (cement lined)	Steel
Type	Flume	Flume	Flume	Flume	Flume	Flume	Flume
Northing	-34.151	-34.147	-34.146	-34.146	-34.145	-34.144	-34.143
Easting	150.757	150.758	150.760	150.761	150.762	150.764	150.765
Chainage (m)	17481	17892	18144	18273	18407	18598	18745
₽	32	33	34	35	36	37	38

1 x 700 half pipe			Increase upstream berm 100mm			1 x 700 half pipe
Repair, Supplement	No action	Clear drainage path	Repair, Supplement	No action	Repair only	Repair, Supplement
72.73472197	above 100 year	above 100 year	56.96149922	above 100 year	above 100 year	24.21156501
High	High	Exceptional	Moderate/Intrusive	Moderate	High	Moderate/Intrusive
575x1000	600 dia	1200 dia	900×800	1050×500	800 dia + 200 high walls	600×600
Box	Half pipe	Pipe	Box	Box	Half pipe	Box
Steel	Steel	Concrete	Steel	Steel	Steel	Steel
Flume	Flume	Siphon	Flume	Flume	Flume	Flume
-34.142	-34.141	-34.139	-34.137	-34.136	-34.133	-34.132
150.766	150.766	150.765	150.765	150.766	150.767	150.769
19038	19164	19401	19606	19750	20092	20343
39	40	41	42	43	44	45

SCALE 1:4 000 Plotted 6/8/2001

Upper Canal Cross Drainage Analysis Catchment Layout - Map 24 / 29

SCALE 1:4 000 Plotted 6/8/2001 Upper Canal Cross Drainage Analysis Catchment Layout - Map 25 / 29

Chainage:	16477	Description	: Trapezoida			· · · · ·		
			Pit Level	Oven		verflows	Struct Locatn	
	USIL	DSIL	<u>US</u> DS	Lev	'ei	To	Cap ARI Cap ARI	
	10.6					Out	10000 1247	
	ARI	Flow	Flow	Effective	Water	Excess	Descriptn	
		Arriving	Through	Tailwater	Level	Flow		
	1	1.076	1.076	10.6	10.824	0	Critical Depth	
	2	1.476	1.476	10.6	10.873	0	Critical Depth	
	5	1.978	1.978	10.6	10.928	0	Critical Depth	
	10	2.282	2.282	10.6	10.958	0	Critical Depth	
	20	2.738	2.738	10.6	11	0	Critical Depth	
	50	3.309	3.309	10.6	11.049	0	Critical Depth	
	100	3.765	3.765	10.6	11.085	0	Critical Depth	
	10000	9.893	9.893	10.6	11.451	00	Critical Depth	
Chainage:	17461	Description	n: 1 x 1/2 pip	e open flun	ne 1m dia 0	.5m high		
		_	Pit Level	Oven		rerflows	Struct Locatn	
	USIL	DSIL	US DS	Lev	el	То	Cap ARI Cap ARI	
	10	9.9			10.6	Canal	150 150	
	ARI	Flow	Flow	Effective	Water	Excess	Descriptn	
		Arriving	Through	Tailwater	Level	Flow		
	1	0.184	0.184	10.084	10.28	0	Subcritical Flow - Outlet Control	
	2	0.248	0.248	10.116	10.327	0	Subcritical Flow - Outlet Control	
	5	0.337	0.337	10.156	10.384	0	Subcritical Flow - Outlet Control	
	10	0.384	0.384	10.175	10.411	0	Subcritical Flow - Outlet Control	
	20	0.454	0.454	10.201	10.45	0	Subcritical Flow - Outlet Control	
	50	0.553	0.553	10.236	10.5	0	Subcritical Flow - Outlet Control	
	100	0.628	0.628	10.261	10.535	0	Subcritical Flow - Outlet Control	
	10000	2.389	0.784	10.31	10.604	1.605	Subcritical Flow - Outlet Control	
Chainage:	17857	Description	n: 1 x closed	pipe flume	, 1.02m dia			
			Pit Level	Over		rerflows	Struct Locatn	
	USIL	DSIL	<u>US</u> DS	Lev		To	Cap ARI Cap ARI	
	10	9.762		10).416	Canal	4 4	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.187	_	9.92	10.299	0	Inlet Control - Inlet not submerged	
	2	0.259		9.951	10.295	0	Inlet Control - Inlet not submerged	
	2 5	0.233		9.977	10.305	0.022		
	10	0.347		9.977	10.419	0.022	Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged	
	20	0.48		9.977	10.419	0.155	inlet Control - Inlet not submerged	
		0.48		9.977	10.419	0.155	Inlet Control - Inlet not submerged	
			0.352	3.311	10.413	0.200	-	
	50 100				10 /10	0 335	Inlet Control - Inlet not submerged	
	100	0.66	0.325	9.977	10.419 10.419	0.335 2.295	Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged	
Chainage:		0.66 2.62	0.325 0.325	9.977 9.977	10.419	2.295	Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged Slopes 1:3, Top - 20	
Chainage:	100 10000 17857	0.66 2.62 Description	0.325 0.325 n: Trapezoida Pit Level	9.977 9.977 al Channel, <i>Over</i>	10.419 Base - 2.5, flow O	2.295 Depth - 0.6, verflows	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn	
Chainage:	100 10000	0.66 2.62	0.325 0.325 n: Trapezoid	9.977 9.977 al Channel, Over Lev	10.419 Base - 2.5, flow O	2.295 Depth - 0.6,	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20	
Chainage:	100 10000 17857 USIL	0.66 2.62 Description DSIL Flow	0.325 0.325 n: Trapezoida Pit Level US DS	9.977 9.977 al Channel, Over Lev 10 Effective	10.419 Base - 2.5, flow Ov rel 0.442 Water	2.295 Depth - 0.6, <i>verflows</i> To Canal Excess	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI	
Chainage:	100 10000 17857 <u>USIL</u> 9.762 ARI	0.66 2.62 Description DSIL Flow Arriving	0.325 0.325 n: Trapezoid Pit Level US DS Flow Through	9.977 9.977 al Channel, Over Lev 10 Effective Tailwater	10.419 Base - 2.5, flow Ov rel 0.442 Water Level	2.295 Depth - 0.6, verflows To Canal Excess Flow	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn	
Chainage:	100 10000 17857 USIL 9.762 ARI 1	0.66 2.62 Description DSIL Flow Arriving 0.187	i 0.325 0.325 n: Trapezoid Pit Level US DS Flow Through 0.187	9.977 9.977 al Channel, Over Lev 10 Effective Tailwater 9.762	10.419 Base - 2.5, flow Outside flow Outside 0.442 Water Level 9.829	2.295 Depth - 0.6, /erflows To Canal Excess Flow	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth	
Chainage:	100 10000 17857 USIL 9.762 ARI 1 2	0.66 2.62 Description DSIL Flow Arriving 0.187 0.25	0.325 0.325 n: Trapezoida Pit Level US DS Flow Through 0.187 0.259	9.977 9.977 al Channel, Over Lev 10 Effective Tailwater 9.762 9.762	10.419 Base - 2.5, flow Out rel Out 0.442 Water Level 9.829 9.843 0.843	2.295 Depth - 0.6, <i>reflows</i> To Canal <i>Excess</i> <i>Flow</i> 0 0	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth Normal Depth	
Chainage:	100 10000 17857 USIL 9.762 ARI 1 2 5	0.66 2.62 Description DSIL Flow Arriving 0.187 0.255 0.325	0.325 0.325 n: Trapezoida Pit Level US DS Flow Through 0.187 0.259 0.325	9.977 9.977 al Channel, <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 9.762 9.762 9.762	10.419 Base - 2.5, flow Out vel Out 0.442 Water Level 9.829 9.843 9.854	2.295 Depth - 0.6, verflows To Canal Excess Flow 0 0 0 0	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth Normal Depth Normal Depth	
Chainage:	100 10000 17857 USIL 9.762 ARI 1 2 5 10	0.66 2.62 Description DSIL Flow Arriving 0.187 0.259 0.325 0.325	0.325 0.325 1 Trapezoida Pit Level US Flow Through 0.187 0.259 0.325 0.325	9.977 9.977 al Channel, <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 9.762 9.762 9.762 9.762 9.762	10.419 Base - 2.5, flow Ovel 0.442 Water Level 9.829 9.843 9.854 9.854	2.295 Depth - 0.6, /erflows To Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth	
Chainage:	100 10000 17857 USIL 9.762 ARI 1 2 5 10 20	0.66 2.62 Description DSIL Flow Arriving 0.187 0.255 0.325 0.325 0.325	0.325 0.325 0.325 n: Trapezoida Pit Level US DS Flow Through 0.187 0.259 0.325 0.325 0.325 0.325 0.325	9.977 9.977 al Channel, <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 9.762 9.762 9.762 9.762 9.762 9.762	10.419 Base - 2.5, flow Ovel 0.442 Water Level 9.829 9.843 9.854 9.854 9.854	2.295 Depth - 0.6, /erflows To Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth	
Chainage:	100 10000 17857 9.762 ARI 1 2 5 10 20 50	0.66 2.62 Description DSIL Flow Arriving 0.187 0.255 0.325 0.325 0.325 0.325	0.325 0.325 0.325 r: Trapezoida Pit Level US Flow Through 0.187 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325	9.977 9.977 al Channel, <i>Over</i> <i>Lev</i> 10 Effective <i>Tailwater</i> 9.762 9.762 9.762 9.762 9.762 9.762 9.762	10.419 Base - 2.5, flow Ovel 0.442 Water Level 9.829 9.843 9.854 9.854 9.854 9.854	2.295 Depth - 0.6, /erflows To Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth Normal Depth	
Chainage:	100 10000 17857 USIL 9.762 ARI 1 2 5 10 20	0.66 2.62 Description DSIL Flow Arriving 0.187 0.255 0.325 0.325 0.325	0.325 0.325 0.325 n: Trapezoidi Pit Level US DS Flow Through 0.187 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325	9.977 9.977 al Channel, <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 9.762 9.762 9.762 9.762 9.762 9.762	10.419 Base - 2.5, flow Ovel 0.442 Water Level 9.829 9.843 9.854 9.854 9.854	2.295 Depth - 0.6, /erflows To Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0	Inlet Control - Inlet not submerged Slopes 1:3, Top - 20 Struct Locatn Cap ARI Cap ARI 10000 4 Descriptn Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth Normal Depth	

Chainage:	18120	http://www.	1 x rectan	Over		verflows	Struct	Locatn	
	USIL		<u>IS</u> DS	Lev		To	Cap ARI	Cap ARI	
	10	9.535			10.9	Canal	381	25	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn		
	1	0.19	0.19	9.635	10.271	0	Subcritical F	low - Outlet Control	
	2	0.261	0.261	9.664	10.335	0	Subcritical F	low - Outlet Control	
	5	0.355	0.355	9.701	10.412	0	Subcritical F	low - Outlet Control	
	10	0.407	0.407	9.721	10.451	0	Subcritical F	low - Outlet Control	
	20	0.493	0.493	9.752	10.512	0	Subcritical F	low - Outlet Control	
	50	0.591	0.591	9.787	10.578	0	Subcritical F	low - Outlet Control	
	100	0.663	0.663	9.812	10.624	0	Subcritical F	low - Outlet Control	
	10000	2.64	1.237	9.986	10.902	1.403	Subcritical F	low - Outlet Control	
Chainage:	18120	Description:		al Channel,	Base - 2.5	, Depth - 0.5,	Slopes 1:1, To	op - 5	
	USIL	DSIL I	Pit Level JS DS	Over Lev		verflows To	Struct Cap ARI	Locatn Con A Pl	
	9.535		15 03		9.642	Canal	25	Cap ARI 25	
		Flow	Flow	Effective	Water			20	
	ARI	Arriving	Through	Tailwater	Level	Excess Flow	Descriptn		
	1	0.19	0.19	9.535	9.596	0	Normal Dept	h	
	2	0.261	0.261	9.535	9.608	0	Normal Dept	h	
	5	0.355	0.355	9.535	9.623	0	Normal Dept	h	
	10	0.407	0.407	9.535	9.631	0	Normal Dept	h	
	20	0.493	0.493	9.535	9.642	0	Normal Dept	h	
	50	0.591	0.517	9.535	9.646	0.074	Normal Dept	h	
	100	0.663	0.517	9.535	9.646	0.146	Normal Dept	h	
							-		
	10000	1.237	0.517	9.535	9.646	0.72	Normal Dept		
Chainage:	10000 18220	1.237 Description:					Normal Dept		
Chainage:	18220	Description:	1 x closed Pit Level	pipe culve Over	rt, 0.46m di flow O		Struct	Locatn	
Chainage:	_	Description:	1 x closed	pipe culve Over Lev	rt, 0.46m di flow Or vel	a verflows		h	
Chainage:	18220 USIL	Description: DSIL ι	1 x closed Pit Level	pipe culve Over Lev	rt, 0.46m di flow Or vel	a verflows To	Struct Cap ARI	Locatn Cap ARI	
Chainage:	18220 USIL 10.913 ARI	Description: DSIL L 10.796 Flow	1 x closed Pit Level JS DS Flow Through	pipe culve Over Lev 11 Effective Tailwater	rt, 0.46m di flow Or vel 1.721 Ne Water Level	ia verflows To ext Structure Excess Flow	Struct Cap ARI 4 Descriptn	Locatn Cap ARI 13	
Chainage:	18220 USIL 10.913 ARI 1	Description: DSIL 10.796 Flow Arriving 0.194	1 x closed Pit Level JS DS Flow Through 0.194	pipe culve Over Lev 11 Effective Tailwater 11.024	rt, 0.46m di flow Or vel I.721 Ne Water Level 11.38	ia verflows To ext Structure Excess Flow 0	Struct Cap ARI 4 Descriptn Inlet Control	Locatn Cap ARI 13	
Chainage:	18220 USIL 10.913 ARI 1 2	Description: DSIL 10.796 Flow Arriving 0.194 0.268	1 x closed Pit Level JS DS Flow Through 0.194 0.268	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073	rt, 0.46m di flow Or rel 1.721 Ne Water Level 11.38 11.468	ia verflows To ext Structure Excess Flow 0 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged	
Chainage:	18220 USIL 10.913 ARI 1 2 5	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355	1 x closed Pit Level IS DS Flow Through 0.194 0.268 0.34	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115	rt, 0.46m di flow Or el 1.721 Ne Water Level 11.38 11.468 11.721	ia verflows To ext Structure Excess Flow 0 0 0 0.015	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged - Inlet submerged	
Chainage:	18220 USIL 10.913 ARI 1 2 5 10	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413	1 x closed Pit Level IS DS Flow Through 0.194 0.268 0.34 0.34	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721	ia verflows To xxt Structure Excess Flow 0 0 0 0.015 0.073	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged - Inlet submerged - Inlet submerged	
Chainage:	18220 USIL 10.913 ARI 1 2 5 10 20	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115 11.115	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged	
Chainage:	18220 USIL 10.913 ARI 1 2 5 10	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115 11.115 11.115	rt, 0.46m di flow Or rel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged	
Chainage:	18220 USIL 10.913 ARI 1 2 5 10 20 50	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115 11.115	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100	Description: DSIL (10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115 11.115 11.115 11.115 11.115 11.115	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721	ia verflows To ext Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 10000 18220	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description:	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed <i>Pit Level</i>	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 0.00000000000000000000000000000000000	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Struct	h Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged	
Chainage:	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description:	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.115 11.24 Over Lev	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	Locatn Cap ARI 13 13 - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 18220 USIL	Description: DSIL (10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL (9.7 Flow	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i>	pipe culve Over Lev 11 Effective Tailwater 11.024 11.073 11.115 11.15 11.115	rt, 0.46m di flow Or rel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water	ia verflows To ext Structure Excess Flow 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Struct Cap ARI	Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 10000 18220 USIL 10 ARI	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL L 9.7 Flow Arriving	1 x closed Pit Level IS DS Flow Through 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed Pit Level IS DS Flow Through	pipe culve Over Lev Tailwater 11.024 11.024 11.073 11.115	rt, 0.46m di flow Or rel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water Level	a verflows To xt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Struct Cap ARI 13 Descriptn	Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 18220 USIL 10 ARI 1	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL L 9.7 Flow Arriving 0.194	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194	pipe culve <i>Over</i> <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 11.024 11.024 11.073 11.115 11.15 11.115	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water Level 10.442	a verflows To xxt Structure Excess Flow 0 0.015 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Struct Cap ARI 13 Descriptn Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 10000 18220 USIL 10 ARI	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL L 9.7 Flow Arriving	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268	pipe culve <i>Cver</i> <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 11.024 11.024 11.073 11.115 11.15 11.115	rt, 0.46m di flow Or rel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water Level 10.442 10.539	a verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Struct Cap ARI 13 Descriptn Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 13 - Inlet not submerged - Inlet not submerged - Inlet not submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 100 1000 18220 USIL 10 ARI 1 2 5 10 100 100 100 100 100 100 1	Description: DSIL L 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL L 9.7 Flow Arriving 0.194 0.268 0.355	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.35 0.5	pipe culve <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 11.024 11.073 11.115 11.15 11.115	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water Level 10.442 10.539 10.638	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 18220 USIL 10 ARI 1 2 5 10 1000 18220 100 10000 18220 100 10000 18220 100 10000 18220 100 100 100	Description: DSIL [] 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL [] 9.7 Flow Arriving 0.194 0.268 0.355 0.413 0.413	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.35 0.194 0.268 0.355 0.413	pipe culve <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 11.024 11.073 11.115 11.15 11.115	rt, 0.46m di flow Or el 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water Level 10.442 10.539 10.638 10.811	ia verflows To xxt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet submerged - Inlet submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 18220 USIL 10 ARI 1 2 5 10 20 50 100 1000 10000 18220 100 10000 18220 100 10000 18220 100 100000 100000 10000 10000 10000 1000000 1000000 1000000 1000000 100000 1000	Description: DSIL [10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL [9.7 Flow Arriving 0.194 0.268 0.355 0.413 0.494	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.35 0.413 0.448 0.448	pipe culve Cover Lev 11 Effective Tailwater 11.024 11.073 11.115 10.008	rt, 0.46m di flow Or eel 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or eel 0.925 Water Level 10.442 10.539 10.638 10.811 10.922	ia verflows To ixt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 13 - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet submerged	
	18220 USIL 10.913 ARI 1 2 5 10 20 50 100 1000 18220 USIL 10 ARI 1 2 5 10 1000 18220 100 10000 18220 100 10000 18220 100 10000 18220 100 100 100	Description: DSIL [] 10.796 Flow Arriving 0.194 0.268 0.355 0.413 0.494 0.582 0.675 2.652 Description: DSIL [] 9.7 Flow Arriving 0.194 0.268 0.355 0.413 0.413	1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.194 0.268 0.355 0.413	pipe culve <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 11.024 11.073 11.115 11.15 11.115	rt, 0.46m di flow Or el 1.721 Ne Water Level 11.38 11.468 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 11.721 0.51m dia flow Or rel 0.925 Water Level 10.442 10.539 10.638 10.811	ia verflows To ixt Structure Excess Flow 0 0 0.015 0.073 0.154 0.242 0.335 2.312 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Cap ARI 4 Descriptn Inlet Control Inlet Control	Locatn Cap ARI 13 - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet not submerged - Inlet submerged - Inlet submerged - Inlet submerged	

Friday, 5 October 2001 Design Case 3, After Corrective Maintenanc

Page 18 of 115

Chainage:	18400	Description:						
	USIL	DSIL (Pit Level JS DS	Over Lev		verflows To	Struct Locatn Cap ARI Cap ARI	
	10	9.586		11	.295	Canal	10000 10000	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.142	0.142	9.706	10.262	0	Subcritical Flow - Outlet Control	
	2	0.195	0.195	9.731	10.309	0	Subcritical Flow - Outlet Control	
	5	0.264	0.264	9.759	10.363	0	Subcritical Flow - Outlet Control	
	10	0.306	0.306	9.776	10.393	0	Subcritical Flow - Outlet Control	
	20 50	0.361 0.44	0.361 0.44	9.795 9.822	10.429 10.478	0 0	Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
	100	0.491	0.491	9.838	10.470	0	Subcritical Flow - Outlet Control	
	10000	1.974	1.974	10.208	11.152	0	Subcritical Flow - Outlet Control	
Chainage:	18400	Description:				epth - , Slope		
		<u>·</u>	Pit Level	Oven		verflows	Struct Locatn	
	USIL	DSIL (JS DS	Lev	el	То	Cap ARI Cap ARI	
	9.586			9	.856	Canal	10000 10000	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.142	0.142	9.586	9.639	0	Normal Depth - Water on overbank	
	2	0.195	0.195	9.586	9.65	0	Normal Depth - Water on overbank	
	5	0.264	0.264	9.586	9.663	0	Normal Depth - Water on overbank	
	10	0.306	0.306	9.586	9.67	0	Normal Depth - Water on overbank	
	20	0.361	0.361	9.586	9.678	0	Normal Depth - Water on overbank	
	50	0.44	0.44	9.586	9.69	0	Normal Depth - Water on overbank	
			0.491	9.586	9.697	0	Normal Depth - Water on overbank	
	100	0.491						
	100 10000	0.491 <u>1.974</u>	1.974	9.586	9.843	0	Normal Depth - Water on overbank	
Chainage:			1.974	9.586	9.843	0		
Chainage:	10000 18570	1.974 Description:	1.974 1 x closed Pit Level	9.586 pipe culver Over	9.843 t, 0.45m dia flow Ov	0 a <i>verflow</i> s	Normal Depth - Water on overbank Struct Locatn	
Chainage:	10000 18570 USIL	1.974 Description: DSIL	1.974 1 x closed	9.586 pipe culver Oven Lev	9.843 t, 0.45m dia flow Ov el	0 a verflows To	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI	
Chainage:	10000 18570	<u>1.974</u> Description: DSIL (10.591	1.974 1 x closed Pit Level JS DS	9.586 pipe culver Over Lev 11	9.843 t, 0.45m dia flow Ov el .241 Net	0 a /erflows To xt Structure	Normal Depth - Water on overbank Struct Locatn	
Chainage:	10000 18570 USIL	1.974 Description: DSIL	1.974 1 x closed Pit Level	9.586 pipe culver Oven Lev	9.843 t, 0.45m dia flow Ov el	0 a verflows To	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI	
Chainage:	10000 18570 USIL 10.661	1.974 Description: DSIL (10.591 Flow	1.974 1 x closed Pit Level JS DS Flow	9.586 pipe culver Over Lev 11 Effective	9.843 t, 0.45m dia flow Ov el .241 Ne: Water	0 a verflows To xt Structure Excess	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60	
Chainage:	10000 18570 USIL 10.661 ARI	1.974 Description: DSIL (10.591 Flow Arriving	1.974 1 x closed Pit Level JS DS Flow Through	9.586 pipe culver Oven Lev 11 Effective Tailwater	9.843 t, 0.45m dia low Ov el .241 Ne: Water Level	0 a verflows To xt Structure Excess Flow	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60 Descriptn	
Chainage:	10000 18570 USIL 10.661 ARI 1 2 5	1.974 Description: DSIL 10.591 Flow Arriving 0.378 0.522 0.703	1.974 1 x closed Pit Level JS DS Flow Through 0.266	9.586 pipe culver Oven Lev 11 Effective Tailwater 10.896	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245	0 a verflows To xt Structure Excess Flow 0.112	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
Chainage:	10000 18570 USIL 10.661 ARI 1 2 5 10	1.974 Description: DSIL 10.591 Flow Arriving 0.378 0.522 0.703 0.819	<u>1.974</u> <u>1 x closed</u> <u>Pit Level</u> <u>JS</u> <u>DS</u> <u>Flow</u> <u>Through</u> 0.266 0.266 0.266 0.266	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ovel .241 Net Water Level 11.245 11.245 11.245 11.245 11.245	0 a <i>verflows</i> <i>To</i> xt Structure <i>Excess</i> <i>Flow</i> 0.112 0.256 0.437 0.553	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10000 18570 USIL 10.661 ARI 1 2 5 10 20	1.974 Description: DSIL 10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974	<u>1.974</u> 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.266 0.266 0.266 0.266 0.266	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245 11.245 11.245 11.245 11.245 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
Chainage:	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50	1.974 Description: DSIL 10.591 Flow Arriving 0.378 0.378 0.378 0.522 0.703 0.819 0.974 1.186	<u>1.974</u> 1 x closed Pit Level JS DS Flow Through 0.266 0.266 0.266 0.266 0.266 0.266	9.586 pipe culver <i>Oven</i> <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 10.896 10.896 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ou el .241 Ne: Water Level 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
Chainage:	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100	1.974 Description: DSIL 10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327	<u>1.974</u> 1 x closed Pit Level JS DS Flow Through 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266	9.586 pipe culver <i>Oven</i> 11 <i>Effective</i> <i>Tailwater</i> 10.896 10.896 10.896 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ou el .241 Ne: Water Level 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378	<u>1.974</u> <u>1 x closed</u> <u>Pit Level</u> <u>JS</u> <u>DS</u> <u>Flow</u> <u>Through</u> 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266	9.586 pipe culver <i>Over</i> 11 <i>Effective</i> <i>Tailwater</i> 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ovel .241 Ne: <i>Water</i> <i>Level</i> 11.245 11.245 11.245 11.245 11.245 11.245 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
Chainage:	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100	1.974 Description: DSIL 10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327	1.974 1 x closed Pit Level JS DS Flow Through 0.266	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ovel .241 Net Water Level 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description:	1.974 1 x closed Pit Level JS DS Flow Through 0.266	9.586 pipe culver <i>Over</i> 11 <i>Effective</i> <i>Tailwater</i> 10.896 10.896 10.896 10.896 10.896 10.896 10.896 10.896	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 0.00000000000000000000000000000000000	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Struct Locatn	
	10000 18570 US/L 10.661 ARI 1 2 5 10 20 50 100 10000 18570	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description:	1.974 1 x closed Pit Level JS DS Flow Through 0.266	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.89	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 0.00000000000000000000000000000000000	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 10000 18570 USIL	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (1.974 1 x closed Pit Level JS DS Flow Through 0.266	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.89	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 11.245 0.00 0.	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Struct Locatn Cap ARI Cap ARI	
	10000 18570 US/L 10.661 ARI 1 2 5 10 20 50 100 10000 18570 US/L 10	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow	1.974 1 x closed Pit Level JS DS Flow Through 0.266 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.89	9.843 1, 0.45m dia 7/ow Ov el .241 Ne: Water Level 11.245 1.286 1.2864 Water	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To Canal Excess	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet C	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 10000 18570 USIL 10 ARI	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow Arriving	1.974 1 x closed Pit Level JS DS Flow Through 0.266 D.266	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.89	9.843 t, 0.45m dia flow Ovel .241 Net Water Level 11.245	0 a /erflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 /erflows To Canal Excess Flow	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Struct Locatn Cap ARI Cap ARI 60 60 Descriptn	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 10000 18570 USIL 10 ARI 10 10 10 10 10 10 10 10 10 10	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow Arriving 0.378	<u>1.974</u> 1 x closed <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.266 0.255 0	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.89	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Normal Depth - Water on overbank Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged 60 Struct Locatn Cap ARI Cap ARI 60 60 Descriptn Inlet Control - Inlet not submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 10000 18570 USIL 10 ARI 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow Arriving 0.378 0.378 0.378 0.378 0.378 0.378	1.974 1 x closed Pit Level JS DS Flow Through 0.266 0.267 0.258 0.258 0.378 0.522	9.586 pipe culver Over Lev 11 Effective Tailwater 10.896 10.89	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 10000 18570 USIL 10 ARI 1 2 5 10 20 50 100 1000 10000 10000 10000 18570 10 20 50 100 1000 1000 1000 10000 10	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow Arriving 0.378 0.522 0.703	1.974 1 x closed Pit Level JS DS Flow Through 0.266 0.256 0.255 0.255 0.255 0.378 0.522 0.703	9.586 pipe culver <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 10.896 10.89	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet not submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 1000 10000 18570 USIL 10 ARI 1 2 5 10 20 50 100 1000 1000 10000 10000 1000 1000 1000 10000 1000 10000 10000	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow Arriving 0.378 0.522 0.703 0.819 0.378 0.522 0.703 0.819 0.378 0.522 0.703 0.819 0.378 0.522 0.703 0.974 1.186	1.974 1 x closed Pit Level JS DS Flow Through 0.266 0.255 0.255 0.255 0.25 0.378 0.522 0.703 0.819	9.586 pipe culver Oven Lev 11 Effective Tailwater 10.896 10.89	9.843 1, 0.45m dia 7/ow Ov el .241 Ne: Water Level 11.245 10.864 Water Level 10.617 10.753 10.85	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet not submerged	
	10000 18570 USIL 10.661 ARI 1 2 5 10 20 50 100 1000 10000 18570 USIL 10 ARI 1 2 5 10 20 50 100 1000 10000 10000 10000 18570 10 20 50 100 1000 1000 1000 10000 10	1.974 Description: DSIL (10.591 Flow Arriving 0.378 0.522 0.703 0.819 0.974 1.186 1.327 5.378 Description: DSIL (9.634 Flow Arriving 0.378 0.522 0.703 0.378 0.522 0.703 0.819 0.378 0.522 0.703 0.819 0.378 0.522	1.974 1 x closed Pit Level JS DS Flow Through 0.266 0.267 0.258 0.522 0.703 0.819 0.974	9.586 pipe culver <i>Lev</i> 11 Effective <i>Tailwater</i> 10.896	9.843 t, 0.45m dia flow Ovel .241 Ne: Water Level 11.245	0 a verflows To xt Structure Excess Flow 0.112 0.256 0.437 0.553 0.708 0.92 1.061 5.112 verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 1 60 Descriptn Inlet Control - Inlet submerged Inlet Control - Inlet not submerged	

Chainage:	18570	Description	: Trapezoida			•	·	
	USIL	DSIL	Pit Level US DS	Over Lev		verflows To	Struct Locatn Cap ARI Cap ARI	
	9.634			10).261	Canal	10000 60	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Waler Level	Excess Flow	Descriptn	
	1	0.378	0.378	9.634	9.828	0	Normal Depth	
	2	0.522	0.522	9.634	9.869	0	Normal Depth	
	5	0.703	0.703	9.634	9.913	0	Normal Depth	
	10	0.819	0.819	9.634	9.938	0	Normal Depth	
	20	0.974	0.974	9.634	9.97	0	Normal Depth	
	50	1.186	1.186	9.634	10.01	0	Normal Depth	
	100	1.223	1.223	9.634	10.016	0	Normal Depth	
	10000	1.223	1.223	9.634	10.016	0	Normal Depth	
Chainage:	18690	Description	: 1 x rectang	gular open	flume 0.45i	m high x 0.6m	wide	
	USIL	DSIL	Pit Level US DS	Over Lev		verflows To	Struct Locatn Cap ARI Cap ARI	
	10	9.808	US DS		0.45	Canal	10 10	
		Flow	Flow	Effective	Water			
	ARI	Arriving	Through	Tailwater	Level	Excess Flow	Descriptn	
	1	0.188	0.188	9.939	10.269	0	Subcritical Flow - Outlet Control	
	2	0.259	0.259	9.976	10.334	0	Subcritical Flow - Outlet Control	
	5	0.347	0.347	10.019	10.405	0	Subcritical Flow - Outlet Control	
	10	0.401	0.401	10.044	10.447	0	Subcritical Flow - Outlet Control	
	20	0.479	0.404	10.045	10.449	0.075	Subcritical Flow - Outlet Control	
	50	0.574	0.404	10.045	10.449	0.17	Subcritical Flow - Outlet Control	
	100	0.652	0.404	10.045	10.449	0.248	Subcritical Flow - Outlet Control	
	10000	2.549	0.404	10.045	10.449	2.145	Subcritical Flow - Outlet Control	
Chainage:	19000	Description	: 2 x closed	pipe culve	rt, 0.3m dia			
	USIL	DSIL	Pit Level US DS	Over Lev		verflows To	Struct Locatn Cap ARI Cap ARI	
	10.768	10.703	03 00			xt Structure	<u>1 12</u>	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
		Flow				Excess	Descriptn Inlet Control - Inlet submerged	
	ARI	Flow Arriving	Through	Tailwater	Level	Excess Flow	·	
	ARI 1	Flow Arriving 0.476	Through 0.26	Tailwater 10.975	Level 11.395	Excess Flow 0.216	Inlet Control - Inlet submerged	
	ARI 1 2	Flow Arriving 0.476 0.654	<i>Through</i> 0.26 0.26	Tailwater 10.975 10.975	Level 11.395 11.395	<i>Excess</i> <i>Flow</i> 0.216 0.394	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	ARI 1 2 5	Flow Arriving 0.476 0.654 0.881	Through 0.26 0.26 0.26	<i>Tailwater</i> 10.975 10.975 10.975	Level 11.395 11.395 11.395	<i>Excess</i> <i>Flow</i> 0.216 0.394 0.621	Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	ARI 1 2 5 10 20 50	Flow Arriving 0.476 0.654 0.881 1.019	Through 0.26 0.26 0.26 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975	Level 11.395 11.395 11.395 11.395	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187	Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	ARI 1 2 5 10 20 50 100	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648	Through 0.26 0.26 0.26 0.26 0.26 0.26 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	ARI 1 2 5 10 20 50 100 1000	<i>Flow</i> <i>Arriving</i> 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191	Through 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	ARI 1 2 5 10 20 50 100	<i>Flow</i> <i>Arriving</i> 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191	Through 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 flume 0.99	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58	Inlet Control - Inlet submerged Inlet Control - Inlet submerged M w ide	
Chainage:	ARI 1 2 5 10 20 50 100 1000	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description	Through 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 flume 0.99 flow O	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	ARI 1 2 5 10 20 50 100 10000 19000	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description	Through 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 0.975 0.975 0.975 0.975 0.975 0.975	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 flume 0.99 flow O	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 USIL	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description	Through 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 0.975 0.975 0.975 0.975 0.975 0.975	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 0.99 flow O rel	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 USIL 10 ARI 1	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving 0.476	Through 0.26 0.5 DS Flow Through 0.476	Tailwater 10.975 9.883	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 flume 0.99 flow O rel 0.877 Water	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess	Inlet Control - Inlet submergedInlet Control - Inlet	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 USIL 10 ARI 1 2	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving	Through 0.26 0.5 DS Flow Through	Tailwater 10.975 <td< td=""><td>Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 10.877 Water Level</td><td>Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow</td><td>Inlet Control - Inlet submerged Inlet Control - Inlet submerge</td><td></td></td<>	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 10.877 Water Level	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow	Inlet Control - Inlet submerged Inlet Control - Inlet submerge	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 USIL 10 ARI 1	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving 0.476	Through 0.26 0.5 DS Flow Through 0.476	Tailwater 10.975 9.883	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 10.512	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow 0 0	Inlet Control - Inlet submerged Inlet Control - Inlet submerge	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 USIL 10 ARI 1 2	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving 0.476 0.654	Through 0.26 DS Pit Level US DS Flow Through 0.476 0.654	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 9.883 9.952	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 10.512 10.512 10.633	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow 0 0	Inlet Control - Inlet submerged Inlet Control - Inlet submerge	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 USIL 10 ARI 1 2 5	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving 0.476 0.654 0.881	Through 0.26 DS Pit Level US DS Flow Through 0.476 0.654 0.881	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 gular open Over Lev 10 Effective Tailwater 9.883 9.952 10.035	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 10.592 10.512 10.633 10.772	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow 0 0 0	Inlet Control - Inlet submerged Inlet Control - Inlet submerge	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 19000 19000 19000 19000 19000 19000 19000 1 1 2 1 1 1 1 1 1 1 1	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving 0.476 0.654 0.881 1.019	Through 0.26 0.80 0.476 0.881 1.019	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 gular open Over 10 Effective 7ailwater 9.883 9.952 10.035 10.084	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 flume 0.99 flow O rel 0.877 Water Level 10.512 10.633 10.772 10.85	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow 0 0 0 0 0 0.153	Inlet Control - Inlet submerged Inlet Control - Inlet submerge	
Chainage:	ARI 1 2 5 10 20 50 100 1000 19000 19000 19000 19000 19000 19000 19000 19000 1 1 2 5 1 1 1 1 1 1 1 1	Flow Arriving 0.476 0.654 0.881 1.019 1.221 1.447 1.648 6.191 Description DSIL 9.647 Flow Arriving 0.476 0.654 0.881 1.019 1.221	Through 0.26 0.476 0.654 0.881 1.019 1.068	Tailwater 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 10.975 9.883 9.952 10.035 10.084 10.1	Level 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 11.395 10.877 Water Level 10.633 10.772 10.837	Excess Flow 0.216 0.394 0.621 0.759 0.961 1.187 1.388 5.931 m high x 0.58 verflows To Canal Excess Flow 0 0 0 0 0 0.153 0.379	Inlet Control - Inlet submerged Inlet Control - Inlet submerge	

Friday, 5 October 2001 Design Case 3, After Corrective Maintenanc

Page 20 of 115

•••

	USIL	DSIL (Pit Level JS DS	Over Lev		/erflows To	Struct Cap ARI	Locatn Cap ARI
	11.355	11.001		_		xt Structure	989	10000
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.005	0.005	11.029	11.419	0	Subcritical F	low - Outlet Control
	2	0.007	0.007	11.034	11.431	0	Inlet Control	 Inlet not submerged
	5	0.01	0.01	11.041	11.45	0	Inlet Control	 Inlet not submerged
	10	0.012	0.012	11.044	11.461	0	Inlet Control	 Inlet not submerged
	20	0.013	0.013	11.046	11.467	0	Inlet Control	 Inlet not submerged
	50	0.016	0.016	11.051	11.482	0	Inlet Control	 Inlet not submerged
	100	0.018	0.018	11.055	11.491	0	Inlet Control	 Inlet not submerged
	10000	0.071	0.044	11.09	11.592	0.027	Inlet Control	- Inlet not submerged
Chainage:	19110	Description:	1 x 1/2 pip	e open flun	ne 0.69m di	a 0.345m higl	n	
	USIL	DSIL (Pit Level JS DS	Over Lev		verflows To	Struct Cap ARI	Locatn Cap ARI
	10	9.969	<u>/5 D3</u>		.254	Canal	10000	10000
		Flow	Flow	Effective	Water			
	ARI	Arriving	Through	Tailwater	Level	Excess Flow	Descriptn	
	1	0.005	0.005	10.038	10.049	0	Supercritical	Flow - Jump within Struct
	2	0.007	0.007	10.045	10.059	0	-	Flow - Jump within Struct
	5	0.01	0.01	10.059	10.07	0	Supercritical	Flow - Jump within Struct
	10	0.012	0.012	10.062	10.077	0	Supercritical	Flow - Jump within Struct
	20	0.013	0.013	10.066	10.08	0	•	Flow - Jump within Struct
	50	0.016	0.016	10.072	10.089	0		Flow - Jump within Struct
	100	0.018	0.018	10.076	10.094	0		Flow - Jump within Struct
	10000	0.071	0.071	10.158	10.191	0	Supercritical	Flow - Jump within Struct
Chainage:	19110	Description:	Trapezoida	al Channel,	Base - 0.6,	Depth - 0.5,	Slopes 1:2.6,	Тор - 10
	USIL	DSIL (Pit Level JS DS	Over Lev		/erflows To	Struct Cap ARI	Locatn Cap ARI
	10.004			10	0.221	Canal	10000	10000
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	· 1	0.005	0.005	10.004	10.038	0	Normal Dept	h
	2	0.007	0.007	10.004	10.045	0	Normal Dept	h
	5	0.01	0.01	10.004	10.059	0	Normal Dept	h
	10	0.012	0.012	10.004	10.062	0	Normal Dept	
	20	0.013	0.013	10.004	10.066	0	Normal Dept	h
	50	0.016	0.016	10.004	10.072	0	Normal Dept	h
	100	0.018	0.018	10.004	10.076	0	Normal Dept	h
	10000	0.071	0.071	10.004	10.158	0	Normal Dept	h
	19340	Description.	1 x closed	pipe culve	- rt, 0.3m dia			
Chainage:			Pit Level	Over		/erflows To	Struct Cap ARI	Locatn Cap ARI
Chainage:	USIL	DSIL		Lev	ei			
Chainage:	USIL 14.2	DSIL 14.1	<u>JS</u> DS	Lev	14.8	Canal	10000	71
Chainage:				Lev Effective Tailwater				
Chainage:	14.2	14.1 <i>Flow</i>	<u>JS DS</u> Flow	Effective	14.8 Water	Canal Excess	10000	
Chainage:	14.2 ARI	14.1 Flow Arriving	J <u>S</u> DS Flow Through	Effective Tailwater	14.8 Water Level	Canal Excess Flow	10000 Descriptn	
Chainage:	14.2 <i>ARI</i> 1	14.1 Flow Arriving 0	<u>JS</u> DS Flow Through 0	Effective Tailwater 14.1	14.8 Water Level 14.2	Canal Excess Flow 0	10000 Descriptn No Flow	
Chainage:	14.2 <i>ARI</i> 1 2	14.1 Flow Arriving 0 0	<u>JS</u> DS Flow Through 0 0	Effective Tailwater 14.1 14.1	14.8 Water Level 14.2 14.2	Canal Excess Flow 0 0	10000 Descriptn No Flow No Flow	
Chainage:	14.2 <i>ARI</i> 1 2 5	14.1 Flow Arriving 0 0 0	<u>JS</u> DS Flow Through 0 0 0	Effective Tailwater 14.1 14.1 14.1	14.8 Water Level 14.2 14.2 14.2	Canal Excess Flow 0 0 0	10000 Descriptn No Flow No Flow No Flow	
Chainage:	14.2 <i>ARI</i> 1 2 5 10	14.1 Flow Arriving 0 0 0 0	<u>JS DS</u> Flow Through 0 0 0 0	<i>Effective</i> <i>Tailwater</i> 14.1 14.1 14.1 14.1 14.1	14.8 Water Level 14.2 14.2 14.2 14.2 14.2	Canal Excess Flow 0 0 0 0	10000 Descriptn No Flow No Flow No Flow No Flow	
Chainage:	14.2 ARI 1 2 5 10 20	14.1 Flow Arriving 0 0 0 0 0 0	J <u>S</u> DS Flow Through 0 0 0 0 0 0	Effective Tailwater 14.1 14.1 14.1 14.1 14.1 14.247	14.8 Water Level 14.2 14.2 14.2 14.2 14.2 14.247	Canal Excess Flow 0 0 0 0 0 0	10000 Descriptn No Flow No Flow No Flow No Flow No Flow	
Chainage:	14.2 ARI 1 2 5 10 20 50	14.1 Flow Arriving 0 0 0 0 0 0 0 0 0	JS DS Flow Through 0 0 0 0 0 0 0 0	Effective Tailwater 14.1 14.1 14.1 14.1 14.247 14.623	14.8 Water Level 14.2 14.2 14.2 14.2 14.2 14.247 14.623	Canal Excess Flow 0 0 0 0 0 0 0 0	10000 Descriptn No Flow No Flow No Flow No Flow No Flow No Flow	

Chainage:	19340	,	: 1 x closed						
	USIL	DSIL	Pit Level US DS	Over Lev		verflows To	Struct Cap ARI	Locatn Cap ARI	
	10	9.9085	13.2 12	.9	14.8	Canal	71	71	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn		
	1	0.463	0.463	13.272	13.373	0	Subcritical F	low - Outlet Control	
	2	0.64	0.64	13.362	13.553	0	Subcritical F	low - Outlet Control	
	5	0.849	0.849	13.457	13.793	0	Subcritical F	low - Outlet Control	
	10	0.988	0.988	13.517	13.972	0	Subcritical F	low - Outlet Control	
	20	1.183	1.183	13.595	14.247	0	Subcritical F	low - Outlet Control	
	50	1.419	1.4 1 9	13.685	14.623	0	Subcritical F	flow - Outlet Control	
	100	1.614	1.519	13.722	14.797	0.095		low - Outlet Control	
	10000	6.346	1.519	13.722	14.797	4.827	Subcritical F	low - Outlet Control	
Chainage:	19340	Description	: Rectangul	ar Channel,	Base - 2,	Depth -			_
	USIL	DSIL	Pit Level US DS	Over Lev		verflows To	Struct Cap ARI	Locatn Con ABI	
	12.9	DSIL	<u>US</u> DS	Lev		Out	10000	Cap ARI 71	_
		Elow	Flow	Effective	Water				
	ARI	Flow Arriving	Through	Tailwater	Level	Excess Flow	Descriptn		
	1	0.463	0.463	12.9	13.076	0	Critical Dept	h	
	2	0.64	0.64	12.9	13.118	0	Critical Dept	h	
	5	0.849	0.849	12.9	13.164	0	Critical Dept	h	
	10	0.988	0.988	12.9	13.192	0	Critical Dept	h	
	20	1.183	1.183	12.9	13.229	0	Critical Dept	h	
	50	1.419	1.419	12.9	13.272	0	Critical Dept	h	
	100	1.519	1.519	12.9	13.289	0	Critical Dept		
	100 10000	1.519 1.519	1.519 1.519	12.9 12.9	13.289 <u>13.289</u>		Critical Dept Critical Dept		
Chainage:		1.519		12.9	13.289	0			
Chainage:	10000 19530	1.519 Description	1.519	12.9	13.289 rt, 0.3m dia	0			
Chainage:	10000 19530 USIL	1.519 Description DSIL	1.519 2 x closed	12.9 pipe culve Over Lev	13.289 rt, 0.3m dia flow O rel	0 a iverflows To	Critical Dept Struct Cap ARI	h Locatn Cap ARI	
Chainage:	10000 19530	1.519 Description	1.519 : 2 x closed Pit Level US DS	12.9 pipe culve Over Lev	13.289 rt, 0.3m dia flow O rel 0.979 Ne	0 a Iverflows	Critical Dept	h	
Chainage:	10000 19530 USIL	1.519 Description DSIL	1.519 2 x closed Pit Level	12.9 pipe culve Over Lev	13.289 rt, 0.3m dia flow O rel	0 a iverflows To	Critical Dept Struct Cap ARI	h Locatn Cap ARI 8	
Chainage:	10000 19530 USIL 10.42	1.519 Description DSIL 10.339 Flow	1.519 : 2 x closed Pit Level US DS Flow	12.9 pipe culve Over Lev 10 Effective	13.289 rt, 0.3m dia flow O rel 0.979 Ne Water	0 a vverflows To ext Structure Excess Flow	Critical Dept Struct Cap ARI 1 Descriptn	h Locatn Cap ARI 8	
Chainage:	10000, 19530 USIL 10.42 ARI	1.519 Description DSIL 10.339 Flow Arriving	1.519 2 x closed Pit Level US DS Flow Through	12.9 pipe culve Over Lev 10 Effective Tailwater	13.289 rt, 0.3m dia flow O rel 0.979 Ne Water Level	0 a verflows To ext Structure Excess Flow 0.208	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control	Locatn Cap ARI 8	
Chainage:	10000, 19530 USIL 10.42 ARI 1	1.519 Description DSIL 10.339 Flow Arriving 0.451	1.519 2 x closed Pit Level US DS Flow Through 0.243	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control	Locatn Cap ARI 8	
Chainage:	10000, 19530 USIL 10.42 ARI 1 2	<u>1.519</u> Description DSIL 10.339 Flow Arriving 0.451 0.616	1.519 Pit Level US DS Flow Through 0.243 0.243	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged	
Chainage:	10000, 19530 USIL 10.42 ARI 1 2 5	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839	1.519 Pit Level US DS Flow Through 0.243 0.243 0.243	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged - Inlet submerged	
Chainage:	10000, 19530 USIL 10.42 ARI 1 2 5 10	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961	<u>1.519</u> <u>Pit Level</u> <u>US</u> <u>DS</u> Flow Through 0.243 0.243 0.243 0.243	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged	
Chainage:	10000, 19530 USIL 10.42 ARI 1 2 5 10 20	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159	1.519 Pit Level US DS Flow Through 0.243 0.243 0.243 0.243 0.243 0.243	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565 10.565 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged	
Chainage:	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565 10.565 10.565 10.565 10.565	13.289 rt, 0.3m dia flow O rel 0.979 Ne Water Level 10.982 10.982 10.982 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged - Inlet submerged	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13	1.519 Pit Level US DS Flow Through 0.243 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.24	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565 10.565 10.565 10.565 10.565 10.565 10.565 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 10000 19530	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.2443 0.2443 0.245 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565 10.565 10.565 10.565 10.565 10.565 0.565 0.565 0.565 0.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged	
Chainage: Chainage:	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 10000	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description	1.519 Pit Level US DS Flow Through 0.243 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.24	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.565 10.565 10.565 10.565 10.565 10.565 10.565 0.	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 10000 19530 USIL	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.255 <i>Solutiored Intervel</i>	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565	13.289 rt, 0.3m dia flow O flow O valer O Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.983 10.982 10.983 0.593 Water Vater	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet submerged	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 10000 19530 USIL 10 ARI	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving	1.519 Pit Level US DS Flow Through 0.243 0.255 0.5	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Struct Cap ARI 8 Descriptn	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 10000 19530 USIL 10 ARI 1 1	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451	<u>1.519</u> <u>Pit Level</u> <u>US</u> <u>DS</u> <u>Flow</u> <u>Through</u> 0.243 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.985 10.	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 1000 19530 USIL 10 ARI 1 2 1 1 2 5 10 20 50 1000 1000 1000 19530 100 100 100 1000	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451 0.616	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.255 0.451 0.616	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565	13.289 rt, 0.3m dia flow O 0.979 Ne Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.366 10.45	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Subcritical F	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 1000 10000 19530 USIL 10 ARI 1 2 5 10 20 50 100 100 100	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451 0.616 0.839	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.251 0.616 0.839	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.555	13.289 rt, 0.3m dia flow O vel 0.979 Ne Water Level 10.982 10.985 10.553	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Subcritical F Subcritical F Subcritical F	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 1000 10000 19530 USIL 10 ARI 1 2 5 10 1000 1000 10000 19530 10 10 10 10 10 10 10 10 10 1	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451 0.616 0.839 0.961	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.2	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.284 10.286 10.284 10.285 10.285	13.289 rt, 0.3m dia flow O rel 0.979 Ne Water Level 10.982 10.985 10.553 10.553 10.553	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Struct Cap ARI 8 Descriptn Subcritical F Subcritical F Subcritical F	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 1000 10000 19530 USIL 10 ARI 1 2 5 10 20 50 100 100 100	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451 0.616 0.839 0.961 1.159	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.2451 0.616 0.839 0.931 0.931	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.526 10.284 10.284 10.284	13.289 rt, 0.3m dia flow O 0.979 Na Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.593 Water Level 10.593 10.593 10.593	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descriptn Inlet Control Inlet Control Subcritical F Subcritical F Subcritical F Subcritical F	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 1000 10000 19530 USIL 10 ARI 1 2 5 10 20 50 1000 1000 10000 19530 10 20 50 100	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.2451 0.616 0.931 0.931 0.931	12.9 pipe culve Over Lew 10 Effective Tailwater 10.565 10.526 10.284 10.284 10.284 10.284	13.289 rt, 0.3m dia flow O 0.979 Na Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.593 Water Level 10.3666 10.455 10.553 10.593 10.593 10.593 10.593	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descripton Inlet Control Inlet Control Subcritical F Subcritical F Subcritical F Subcritical F Subcritical F	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	
	10000, 19530 USIL 10.42 ARI 1 2 5 10 20 50 100 1000 10000 19530 USIL 10 ARI 1 2 5 10 20 50 100 100 100	1.519 Description DSIL 10.339 Flow Arriving 0.451 0.616 0.839 0.961 1.159 1.388 1.571 6.13 Description DSIL 9.911 Flow Arriving 0.451 0.616 0.839 0.961 1.159	1.519 <i>Pit Level</i> <i>US DS</i> <i>Flow</i> <i>Through</i> 0.243 0.2451 0.616 0.839 0.931 0.931	12.9 pipe culve Over Lev 10 Effective Tailwater 10.565 10.526 10.284 10.284 10.284	13.289 rt, 0.3m dia flow O 0.979 Na Water Level 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.982 10.593 Water Level 10.593 10.593 10.593	0 verflows To ext Structure Excess Flow 0.208 0.373 0.596 0.718 0.916 1.145 1.328 5.887 n high x 0.91m verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Critical Dept Struct Cap ARI 1 Descripton Inlet Control Inlet Control Subcritical F Subcritical F Subcritical F Subcritical F Subcritical F Subcritical F	h Locatn Cap ARI 8 - Inlet submerged - Inlet s	

+

	19530		-			Depth - , Slope	es 1:0.7	
	USIL	DSIL (Pit Level JS DS	Oven Lev		verflows To	Struct Locatn Cap ARI Cap ARI	
	9.911			10	.296	Canal	10000 8	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.451	0.451	9.911	10.071	0	Normal Depth - Water on overbank	
	2	0.616	0.616	9.911	10.104	0	Normal Depth - Water on overbank	
	5	0.839	0.839	9.911	10.144	0	Normal Depth - Water on overbank	
	10	0.931	0.931	9.911	10.159	0	Normal Depth - Water on overbank	
	20 50	0.931 0.931	0.931 0.931	9.911 9.911	10.159 10.159	0 0	Normal Depth - Water on overbank Normal Depth - Water on overbank	
	100	0.931	0.931	9.911	10.159	0	Normal Depth - Water on overbank	
	10000	0.931	0.931	9.911	10.159	0	Normal Depth - Water on overbank	
Chainage:	19730	Description:	1 x closed	pipe culver	t, 0.6m dia			
			Pit Level	Over		verflows	Struct Locatn	
	USIL 10.474	DSIL ι 10.369	JS DS	Lev 11		To ext Structure	Cap ARI Cap ARI 6 38	
			-				0 30	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.295	0.295	10.643	10.998	0	Inlet Control - Inlet not submerged	
	2	0.399	0.399	10.697	11.105	0	Inlet Control - Inlet not submerged	
	5	0.537	0.537	10.76	11.234	0	Inlet Control - Inlet submerged	
	10	0.621	0.556	10.768	11.275	0.065	Inlet Control - Inlet submerged	
	20 50	0.744	0.556	10.768	11.275	0.188	Inlet Control - Inlet submerged	
	50 100	0.882 1.004	0.556 0.556	10.768 10.768	11.275 11.275	0.326 0.448	Inlet Control - Inlet submerged	
	10000	3.91	0.556	10.768	11.275	3.354	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	19730					m high x 1.06		
onanago.	101 00	2	Pit Level	Over		verflows	Struct Locatn	
	USIL	DSIL (JS DS	Lev	el	То	Cap ARI Cap ARI	
	<i>USIL</i> 10	<u>DSIL</u> 9.759	JS DS		<i>el</i> 10.5	To Canal	Cap ARI Cap ARI 38 38	
			<u>JS</u> DS Flow Through					
	10	9.759 Flow	Flow	Effective	10.5 <i>Water</i>	Canal Excess	38 38	
	10 ARI	9.759 Flow Arriving	Flow Through	Effective Tailwater	10.5 Water Level	Canal Excess Flow	38 38 Descriptn	
	10 <i>ARI</i> 1 2 5	9.759 Flow Arriving 0.295 0.399 0.537	Flow Through 0.295 0.399 0.537	<i>Effective</i> <i>Tailwater</i> 9.867 9.896 9.932	10.5 <i>Water</i> <i>Level</i> 10.249 10.305 10.371	Canal Excess Flow 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
	10 ARI 1 2 5 10	9.759 Flow Arriving 0.295 0.399 0.537 0.621	Flow Through 0.295 0.399 0.537 0.621	Effective Tailwater 9.867 9.896 9.932 9.953	10.5 Water Level 10.249 10.305 10.371 10.409	Canal Excess Flow 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
	10 ARI 1 2 5 10 20	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744	Flow Through 0.295 0.399 0.537 0.621 0.744	Effective Tailwater 9.867 9.896 9.932 9.953 9.983	10.5 <i>Water</i> <i>Level</i> 10.249 10.305 10.371 10.409 10.461	Canal Excess Flow 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
	10 ARI 1 2 5 10 20 50	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841	Effective Tailwater 9.896 9.932 9.953 9.983 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0.041	38 38 Descriptn Subcritical Flow - Outlet Control	
	10 ARI 1 2 5 10 20	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004	Flow Through 0.295 0.399 0.537 0.621 0.744	Effective Tailwater 9.867 9.896 9.932 9.953 9.983	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5	Canal Excess Flow 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
Chainage:	10 ARI 1 2 5 10 20 50 100 10000	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004 3.91	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841	Effective Tailwater 9.896 9.932 9.953 9.983 10.006 10.006 10.006	10.5 <i>Water</i> <i>Level</i> 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
Chainage:	10 ARI 1 2 5 10 20 50 100	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841	Effective Tailwater 9.896 9.932 9.953 9.983 10.006 10.006 10.006	10.5 <i>Water</i> <i>Level</i> 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
Chainage:	10 ARI 1 2 5 10 20 50 100 10000 20045 USIL	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.862 1.004 3.91 Description.	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841 0.841	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 0ver Lev	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 t, 0.375m of flow Or el	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
Chainage:	10 ARI 1 2 5 10 20 50 100 10000 20045 USIL 10.517	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004 <u>3.91</u> Description. DSIL 10.257	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.855	Effective Tailwater 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 pipe culver Lev 11	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control 1 611	
Chainage:	10 ARI 1 2 5 10 20 50 100 10000 20045 USIL	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.862 1.004 3.91 Description.	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 0ver Lev	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 t, 0.375m of flow Or el	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control	
Chainage:	10 ARI 1 2 5 10 20 50 100 1000 20045 USIL 10.517 ARI 1	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.862 1.004 3.91 Description. DSIL 10.257 Flow Arriving 0.376	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 10.006 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5	Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Descriptn Inlet Control - Inlet submerged	
Chainage:	10 ARI 1 2 5 10 20 50 100 10000 20045 USIL 10.517 ARI 1 2 1 2	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.862 1.004 3.91 Description. DSIL 10.257 Flow Arriving 0.376 0.517	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.461 Ne Water Level 11.047 11.047	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Inter Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10 ARI 1 2 5 10 20 50 100 1000 20045 USIL 10.517 ARI 1 2 5	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004 3.91 Description. DSIL 10.257 Flow Arriving 0.376 0.517 0.693	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.78 0.178 0.178 0.178	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.40 Water Level 11.047 11.047 11.047	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Inter Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10 ARI 1 2 5 10 20 50 100 1000 20045 USIL 10.517 ARI 1 2 5 10 10 20045 10 20 20045 10 20 20 20 20 20 20 20 20 20 2	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004 3.91 Description. DSIL 10.257 Flow Arriving 0.376 0.517 0.693 0.801	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.178 0.178 0.178 0.178	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.40 Ne Water Level 11.047 11.047 11.047	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged	
Chainage:	10 ARI 1 2 5 10 20 50 100 1000 20045 USIL 10.517 ARI 1 2 5 10 20 20 20 20 20 20 100 20 20 20 20 20 20 20 20 20	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.862 1.004 3.91 Description. DSIL 10.257 Flow Arriving 0.376 0.517 0.693 0.801 0.956	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.178 0.178 0.178 0.178 0.178	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.461 Ne Water Level 11.047 11.047 11.047 11.047 11.047	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10 ARI 1 2 5 10 20 50 100 1000 20045 USIL 10.517 ARI 1 2 5 10 10 20045 10 20 20045 10 20 20 20 20 20 20 20 20 20 2	9.759 Flow Arriving 0.295 0.399 0.537 0.621 0.744 0.882 1.004 3.91 Description. DSIL 10.257 Flow Arriving 0.376 0.517 0.693 0.801	Flow Through 0.295 0.399 0.537 0.621 0.744 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.178 0.178 0.178 0.178	Effective Tailwater 9.867 9.896 9.932 9.953 9.983 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006 10.006	10.5 Water Level 10.249 10.305 10.371 10.409 10.461 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.40 Ne Water Level 11.047 11.047 11.047	Canal <i>Excess</i> <i>Flow</i> 0 0 0 0 0 0 0 0 0 0 0 0 0	38 38 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged	

Friday, 5 October 2001

.

Chainage:	20045		1 x 1/2 pip	e open flur	ne 0.81m di	a 0.625m hig	h	:
	USIL	DSIL	Pit Level US DS	Over Lev		/erflows To	Struct Locatn Cap ARI Cap ARI	
	10	9.849			13	Canal	611 611	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.376	0.376	10.113	10.437	0	Subcritical Flow - Outlet Control	_
	2	0.517	0.517	10.167	10.52	0	Subcritical Flow - Outlet Control	
	5	0.693	0.693	10.227	10.613	0	Subcritical Flow - Outlet Control	
	10	0.801	0.801	10.262	10.666	0	Subcritical Flow - Outlet Control	
	20	0.956	0.956	10.31	10.739	0	Subcritical Flow - Outlet Control	
	50	0.178	0.178	10.021	10.293	0	Subcritical Flow - Outlet Control	
	100 10000	0.178 5.091	0.178	10.021	10.293	0	Subcritical Flow - Outlet Control	
	10000	5.091	2.108	10.623	11.192	2.983	Spills over flume	
Chainage:	20300	Description				n high x 0.58		
	USIL	DSIL	Pit Level US DS	Over Lev		/erflows To	Struct Locatn Cap ARI Cap ARI	
	10	9.974		10).472	Canal	2 2	_
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.171	0.171	10. 1 81	10.367	0	Subcritical Flow - Outlet Control	
	2	0.234	0.234	10.229	10.455	0	Subcritical Flow - Outlet Control	
	5	0.32	0.245	10.237	10.47	0.075	Subcritical Flow - Outlet Control	
	10	0.364	0.245	10.237	10.47	0.119	Subcritical Flow - Outlet Control	
	20	0.433	0.245	10.237	10.47	0.188	Subcritical Flow - Outlet Control	
	50	0.516	0.245	10.237	10.47	0.271	Subcritical Flow - Outlet Control	
	100 10000	0.595 2.331	0.245 0.245	10.237 10.237	10.47 10.47	0.35 2.086	Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
	10000	2.331	0.245	10.237	10.47_	2.000		
Chainage:	20876	Description			-	igh x 0.75m v		
	USIL	DSIL	Pit Level	Over		/erflows	Struct Locatn	
				lev	/e/	То	Can ARI Can ARI	
	10.425	10.34	US DS	Lev 11		To xt Structure	Cap ARI Cap ARI 3 4	
			Flow Through					
	10.425	10.34 <i>Flow</i>	Flow	11 Effective	I.006 Ne <i>Water</i>	xt Structure Excess	3 4	
	10.425 <i>ARI</i>	10.34 Flow Arriving	Flow Through	11 Effective Tailwater	1.006 Ne Water Level	xt Structure Excess Flow	3 4 Descriptn	
	10.425 <i>ARI</i> 1	10.34 Flow Arriving 0.313	Flow Through 0.313	11 Effective Tailwater 10.528	1.006 Ne Water Level 10.746	xt Structure Excess Flow 0	3 4 Descriptn Subcritical Flow - Outlet Control	
	10.425 <i>ARI</i> 1 2	10.34 Flow Arriving 0.313 0.423	Flow Through 0.313 0.423	11 Effective Tailwater 10.528 10.57	1.006 Ne Water Level 10.746 10.86	xt Structure Excess Flow 0 0	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged	
	10.425 ARI 1 2 5 10 20	10.34 Flow Arriving 0.313 0.423 0.557	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602	1.006 Ne Water Level 10.746 10.86 11.006	xt Structure Excess Flow 0 0 0.052	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	10.425 ARI 1 2 5 10 20 50	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006	xt Structure <i>Excess</i> <i>Flow</i> 0 0.052 0.137 0.256 0.404	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
_	10.425 ARI 1 2 5 10 20 50 100	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006	xt Structure <i>Excess</i> <i>Flow</i> 0 0.052 0.137 0.256 0.404 0.531	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	10.425 ARI 1 2 5 10 20 50 100 1000	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006	xt Structure <i>Excess</i> <i>Flow</i> 0 0.052 0.137 0.256 0.404 0.531 3.45	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10.425 ARI 1 2 5 10 20 50 100	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006	xt Structure <i>Excess</i> <i>Flow</i> 0 0.052 0.137 0.256 0.404 0.531 3.45 a 0.535m hig	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 1000	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 <i>Description</i>	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.006	xt Structure <i>Excess</i> <i>Flow</i> 0 0.052 0.137 0.256 0.404 0.531 3.45	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 10000 20876	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 <i>Description</i>	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 0.602 0.002 E open flur Over Lev	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.006	xt Structure Excess Flow 0 0.052 0.137 0.256 0.404 0.531 3.45 a 0.535m hig verflows	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 10000 20876 USIL	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 <i>Description</i> <i>DSIL</i>	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 0.602 0.002 E open flur Over Lev	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.006	xt Structure Excess Flow 0 0.052 0.137 0.256 0.404 0.531 3.45 a 0.535m hig verflows To	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control -	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 10000 20876 USIL 10 ARI 1	10.34 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 Description DSIL 9.64 Flow	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 Effective	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water	xt Structure <i>Excess</i> <i>Flow</i> 0 0,052 0,137 0,256 0,404 0,531 3,45 a 0.535m hig <i>verflows</i> <i>To</i> Canal <i>Excess</i>	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged Inlet Control - Inlet submerged A	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 10000 20876 USIL 10 ARI 1 2 1 2	10.34 <i>Flow</i> <i>Arriving</i> 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 <i>Description</i> <i>DSIL</i> 9.64 <i>Flow</i> <i>Arriving</i> 0.313 0.423	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 0.002 Effective Tailwater	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water Level 10.393 10.461 10.461	xt Structure Excess Flow 0 0,052 0,137 0,256 0,404 0,531 3,45 a 0.535m hig verflows To Canal Excess Flow	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged h Struct Locatn Cap ARI 4 4 Descriptn	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 10000 20876 USIL 10 ARI 1 2 5	10.34 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 Description DSIL 9.64 Flow Arriving 0.313 0.423 0.557	Flow Through 0.313 0.423 0.505 0.505 0.505 0.505 0.505 0.505 0.505 : 1 x 1/2 pip Pit Level US DS Flow Through 0.313	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 0.002 Effective Tailwater 9.837	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water Level 10.393 10.461 10.527	xt Structure Excess Flow 0 0,052 0,137 0,256 0,404 0,531 3,45 a 0.535m hig verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged h Struct Locatn Cap ARI 4 4 Descriptn Subcritical Flow - Outlet Control	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 10000 20876 USIL 10 ARI 1 2 5 10	10.34 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 Description DSIL 9.64 Flow Arriving 0.313 0.423 0.557 0.642	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 0.002 Effective Tailwater 9.837 9.876 9.913 9.913	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water Level 10.393 10.461 10.527 10.527 10.527	xt Structure Excess Flow 0 0.052 0.137 0.256 0.404 0.531 3.45 a 0.535m hig verflows To Canal Excess Flow 0 0 0 0.017 0.102	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged Mathematical Struct Locatn Cap ARI Struct Locatn Cap ARI 4 4 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 1000 20876 USIL 10 ARI 1 2 5 10 20 20 20 20 20 20 20 20 100 10	10.34 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 Description DSIL 9.64 Flow Arriving 0.313 0.423 0.557 0.642 0.313	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 0.002 Effective Tailwater 9.837 9.876 9.913 9.913 9.913	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water Level 10.393 10.461 10.527 10.527 10.527	xt Structure Excess Flow 0 0 0.052 0.137 0.256 0.404 0.531 3.45 a 0.535m hig verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged Struct Locatn Cap ARI 4 4 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 1000 20876 USIL 10 ARI 1 2 5 10 20 50 100 1000 1000 20876 10 20 50 100 100 100 100 100 100 100	10.34 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 Description DSIL 9.64 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 10.602 Effective Tailwater 9.837 9.837 9.913 9.913 9.913	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water Level 10.393 10.461 10.527 10.527 10.527 10.527 10.527	xt Structure Excess Flow 0 0,052 0,137 0,256 0,404 0,531 3,45 a 0.535m hig verflows To Canal Excess Flow 0 0 0,017 0,102 0,221 0,369	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged Struct Locatn Cap ARI 4 4 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
Chainage:	10.425 ARI 1 2 5 10 20 50 100 1000 20876 USIL 10 ARI 1 2 5 10 20 20 20 20 20 20 20 20 100 10	10.34 Flow Arriving 0.313 0.423 0.557 0.642 0.761 0.909 1.036 3.955 Description DSIL 9.64 Flow Arriving 0.313 0.423 0.557 0.642 0.313	Flow Through 0.313 0.423 0.505	11 Effective Tailwater 10.528 10.57 10.602 10.602 10.602 10.602 10.602 10.602 10.602 0.002 Effective Tailwater 9.837 9.876 9.913 9.913 9.913	1.006 Ne Water Level 10.746 10.86 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 11.006 10.53 Water Level 10.393 10.461 10.527 10.527 10.527	xt Structure Excess Flow 0 0 0.052 0.137 0.256 0.404 0.531 3.45 a 0.535m hig verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet submerged Inlet Control - Inlet submerged Struct Locatn Cap ARI 4 4 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	

Page 24 of 115

•

	3	-	Pit Level	Oven	flow C	Verflows	Struct Locatn	
	USIL	DSIL (JS DS	Lev		То	Cap ARI Cap ARI	
	10.371	10.242		10	.943 N	ext Structure	54 143	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.163	0.163	10.344	10.625	i 0	Inlet Control - Inlet not submerged	
	2	0.226	0.226	10.373	10.633	0	Subcritical Flow - Outlet Control	
	5	0.301	0.301	10.406	10.687	0	Subcritical Flow - Outlet Control	
	10	0.348	0.348	10.425	10.714	ь о	Subcritical Flow - Outlet Control	
	20	0.408	0.408	10.446	10.781		Inlet Control - Inlet submerged	
	50	0.494	0.494	10.476	10.932		Inlet Control - Inlet submerged	
	100	0.545	0.502	10.478	10.943		Inlet Control - Inlet submerged	
	10000	2.01	0.502	10.478	10.943		Inlet Control - Inlet submerged	
Chainage:	21100	Description:		gular open	flume 0.62	2m high x 0.59i	m w ide	
	USIL	DSIL (Pit Level JS DS	Oven Lev)verflows To	Struct Locatn Cap ARI Cap ARI	
	10	9.711		10	.628	Canal	143 143	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.163	0.163	9.815	10.248	0	Subcritical Flow - Outlet Control	
	2	0.226	0.226	9.846	10.308		Subcritical Flow - Outlet Control	
	5	0.301	0.301	9.881	10.373	0	Subcritical Flow - Outlet Control	
	10	0.348	0.348	9.902	10.411	0	Subcritical Flow - Outlet Control	
	20	0.408	0.408	9.928	10.457	0	Subcritical Flow - Outlet Control	
	50	0.494	0.494	9.964	10.519	0	Subcritical Flow - Outlet Control	
	100	0.545	0.545	9.984	10.554	L 0	Subcritical Flow - Outlet Control	
	10000	2.01	0.66	10.029	10.629	1.35	Subcritical Flow - Outlet Control	
Chainada:						inn 8 6 ing 8 8 mgi 4 6 ing 8 8 ing		•
Chainage:	10000 21180		1 x 1/2 pip	e open flun	ne 0.97m (dia 0.485m higi	1	
Chainage:		Description:			ne 0.97m (flow C	inn 8 6 ing 8 8 mgi 4 6 ing 8 8 ing		
Chainage:	21180	Description:	1 x 1/2 pip Pit Level	e open flun Oven Lev	ne 0.97m (flow C	dia 0.485m higi Overflows	n Struct Locatn	
Chainage:	21180 USIL	Description: DSIL (1 x 1/2 pip Pit Level	e open flun Oven Lev	ne 0.97m (flow C el	dia 0.485m higi Overflows To	Struct Locatn Cap ARI Cap ARI	
Chainage:	21180 USIL 10	Description: DSIL (9.933 Flow	1 x 1/2 pip Pit Level JS DS Flow	e open flun Oven Lev 10 Effective	ne 0.97m (flow C el 0.398 Water	dia 0.485m higi Dverflows To Canal Excess Flow	Struct Locatn Cap ARI Cap ARI 26 26	
Chainage:	21180 USIL 10 ARI	Description: DSIL (9.933 Flow Arriving	1 x 1/2 pip Pit Level JS DS Flow Through	e open flun Over Lev 10 Effective Tailwater	ne 0.97m (flow C el 0.398 Water Level	dia 0.485m higi Dverflows To Canal Excess Flow	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn	
Chainage:	21180 USIL 10 ARI 1	Description: DSIL (9.933 Flow Arriving 0.135	1 x 1/2 pip Pit Level JS DS Flow Through 0.135	e open flun Oven Lev 10 Effective Tailwater 10.092	ne 0.97m (flow C el 0.398 Water Level 10.241	dia 0.485m higi Dverflows To Canal Excess Flow 0 2 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
Chainage:	21180 USIL 10 ARI 1 2	Description: DSIL (9.933 Flow Arriving 0.135 0.183	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.183	e open flun Over Lev 10 Effective Tailwater 10.092 10.12	ne 0.97m o flow C el 0.398 Water Level 10.241 10.241	dia 0.485m higt Dverflows To Canal Excess Flow 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
Chainage:	21180 USIL 10 ARI 1 2 5	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244	1 x 1/2 pip <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.135 0.183 0.244	e open flun Over Lev 10 Effective Tailwater 10.092 10.12 10.153	ne 0.97m (flow C el 0.398 Water Level 10.241 10.282 10.327	dia 0.485m higt Dverflows To Canal Excess Flow 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
Chainage:	21180 USIL 10 ARI 1 2 5 10	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281	1 x 1/2 pip <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.135 0.183 0.244 0.281	e open flun Over Lev 10 Effective Tailwater 10.092 10.12 10.153 10.17	ne 0.97m (flow C el 0.398 Water Level 10.241 10.282 10.327 10.352	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
Chainage:	21180 USIL 10 ARI 1 2 5 10 20 50 100	Description: DSIL (9.933 Flow Arriving 0.135 0.163 0.244 0.281 0.331 0.4 0.458	1 x 1/2 pip <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.135 0.183 0.244 0.281 0.331 0.35 0.35	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201	ne 0.97m (flow C el 0.398 Water Level 10.282 10.327 10.352 10.384 10.396 10.396	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
Chainage:	21180 USIL 10 ARI 1 2 5 10 20 50	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4	1 x 1/2 pip <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.135 0.183 0.244 0.281 0.331 0.35	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201	ne 0.97m (flow C el 0.398 Water Level 10.241 10.282 10.327 10.352 10.384 10.396	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
	21180 USIL 10 ARI 1 2 5 10 20 50 100	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.458 1.714	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.135 0.133 0.244 0.281 0.331 0.35 0.35 0.35 0.35	e open flun Over Lev 10 Effective Tailwater 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve	ne 0.97m (flow C el 0.398 Water Level 10.241 10.241 10.282 10.396 10.396 10.396 10.396 rt, 0.4m h	dia 0.485m higi Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
	21180 US/L 10 ARI 1 2 5 10 20 50 100 10000 21230	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.458 1.714 Description:	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.135 0.133 0.244 0.281 0.331 0.35 0.35 0.35 0.35 1 x closed Pit Level	e open flun <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve <i>Over</i>	ne 0.97m (flow C el .398 Water Level 10.241 10.282 10.327 10.352 10.396 10.396 10.396 10.396 10.396 10.396	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
Chainage:	21180 USIL 10 ARI 1 2 5 10 20 50 100 1000	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.458 1.714 Description:	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.135 0.133 0.244 0.281 0.331 0.35 0.35 0.35 0.35	e open flun Over Lev 10 Effective Tailwater 10.092 10.12 10.153 10.17 10.201 10.201 10.201 arch culve Over Lev	ne 0.97m (flow C el 0.398 Water Level 10.241 10.241 10.396 10.396 10.396 10.396 10.396 rt, 0.4m h flow C el	dia 0.485m higi Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
	21180 USIL 10 ARI 1 2 5 10 20 50 100 200 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 100 20 50 100 20 50 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 20 20 20 20 20 20 20 20	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow	1 x 1/2 pip <i>Pit Level</i> <i>JS DS</i> <i>Flow</i> <i>Through</i> 0.135 0.183 0.244 0.281 0.331 0.35 0.35 0.35 0.35 1 x closed <i>Pit Level</i> <i>JS DS</i>	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve <i>Over</i> <i>Lev</i> 11 <i>Effective</i>	ne 0.97m (flow C el 0.398 Water Level 10.241 10.241 10.396 10.396 10.396 10.396 10.396 rt, 0.4m h flow C el	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control	
	21180 US/L 10 ARI 1 2 5 10 20 50 100 200 50 200 200 200 200 200 20	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.183 0.244 0.281 0.331 0.35 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve <i>Over</i> <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i>	ne 0.97m (flow C el .398 Water Level 10.241 10.282 10.327 10.352 10.396 10.396 10.396 10.396 10.396 10.396 10.396 .10.39	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - O	
	21180 US/L 10 ARI 1 2 5 10 20 50 100 200 200 50 100 200 200 200 200 200 200 20	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving 0.2	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.183 0.244 0.281 0.331 0.35 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	e open flun <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve <i>Over</i> <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 10.665	ne 0.97m (flow C el 0.398 Water Level 10.241 10.241 10.322 10.322 10.352 10.396 10.30	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Descriptn Inlet Control - Inlet not submerged	
	21180 USIL 10 ARI 1 2 5 10 20 50 100 100 100 100 100 100 100	Description: DSIL (9.933 Flow Arriving 0.135 0.135 0.183 0.244 0.281 0.331 0.244 0.281 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving 0.2 0.269	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.135 0.183 0.244 0.281 0.331 0.35 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve <i>Over</i> <i>Lev</i> 11 <i>Effective</i> <i>Tailwater</i> 10.665 10.688	ne 0.97m (flow C el 0.398 Water Level 10.241 10.282 10.327 10.352 10.396 10.30	dia 0.485m high Verflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Struct Locatn Cap ARI Cap ARI 165 71 Descriptn Inlet Control - Inlet not submerged	
	21180 USIL 10 ARI 1 2 5 10 20 50 100 100 100 100 20 50 100 100 100 20 50 100 100 100 20 50 100 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 21230 20 21230 10 20 50 20 21230 10 20 50 20 20 20 212 5 25 25 25 25 25 25 25 25 25	Description: DSIL (9.933 Flow Arriving 0.135 0.135 0.183 0.244 0.281 0.331 0.4 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving 0.2 0.269 0.365	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.135 0.135 0.135 0.244 0.281 0.331 0.35 0.35 0.35 0.35 Pit Level JS DS Flow Through 0.269 0.365	e open flun <i>Oven</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 arch culve <i>Over</i> <i>Lev</i> <i>Tailwater</i> 10.665 10.688 10.717	ne 0.97m (flow C el 0.398 Water Level 10.241 10.282 10.327 10.352 10.352 10.396 1	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Cap ARI 165 71 Descriptn Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged Subcritical Flow - Outlet Control	
	21180 USIL 10 ARI 1 2 5 10 20 50 100 21230 21230 10 21 20 55 10 21 20 55 10 20 50 10 20 50 10 20 21 20 10 10 10 10 10 10 10 10 10 1	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving 0.2 0.269 0.365 0.42	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.138 0.244 0.281 0.331 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.26 0.269 0.365 0.42	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 <i>arch culve</i> <i>Over</i> <i>Lev</i> <i>Tailwater</i> 10.665 10.688 10.717 10.733	ne 0.97m (flow C el .398 Water Level 10.241 10.282 10.327 10.352 10.352 10.396 10	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
	21180 USIL 10 ARI 1 2 5 10 20 50 100 20 50 100 20 50 100 10000 21230 USIL 10.776 ARI 1 2 5 10 20 50 100 21230 21230 212 20 20 212 20 20 212 20 20 20 20 212 20 20 212 20 20 20 20 20 20 20 20 20 2	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving 0.269 0.365 0.42 0.496	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.138 0.244 0.281 0.335 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.26 0.269 0.365 0.42 0.496	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.201 10.201 10.201 10.201 arch culve <i>Over</i> <i>Lev</i> <i>Tailwater</i> 10.665 10.688 10.717 10.733 10.753	ne 0.97m (flow C el .398 Water Level 10.241 10.262 10.327 10.352 10.352 10.396 11.016 11.016 11.057 11	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Subcritical Flow - Inlet not submerged Inlet Control - Inlet not submerged Subcritical Flow - Outlet Control Inlet Control - Inlet not submerged Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	
	21180 USIL 10 ARI 1 2 5 10 20 50 100 21230 21230 10 21 20 55 10 21 20 55 10 20 50 10 20 50 10 20 21 20 10 10 10 10 10 10 10 10 10 1	Description: DSIL (9.933 Flow Arriving 0.135 0.183 0.244 0.281 0.331 0.4 0.331 0.4 0.458 1.714 Description: DSIL (10.578 Flow Arriving 0.2 0.269 0.365 0.42	1 x 1/2 pip Pit Level JS DS Flow Through 0.135 0.138 0.244 0.281 0.331 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.26 0.269 0.365 0.42	e open flun <i>Over</i> <i>Lev</i> 10 <i>Effective</i> <i>Tailwater</i> 10.092 10.12 10.153 10.17 10.193 10.201 10.201 10.201 <i>arch culve</i> <i>Over</i> <i>Lev</i> <i>Tailwater</i> 10.665 10.688 10.717 10.733	ne 0.97m (flow C el .398 Water Level 10.241 10.282 10.327 10.352 10.352 10.396 10	dia 0.485m high Dverflows To Canal Excess Flow 0 0 0 0 0 0 0 0 0 0 0 0 0	Struct Locatn Cap ARI Cap ARI 26 26 Descriptn Subcritical Flow - Outlet Control Inlet Control - Inlet not submerged Inlet Control - Inlet not submerged Subcritical Flow - Outlet Control Subcritical Flow - Outlet Control	

•

Chainage:	21230	Description		· · · · · · · · · · · · · · · · · · ·		n high x 0.6m		_
	USIL.		Pit Level US DS	Oven Lev		verflows To	Struct Locatn Cap ARI Cap ARI	
	10	9.546			10.6	Canal	71 71	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.2	0.2	9.651	10.281	0	Subcritical Flow - Outlet Control	
	2	0.269	0.269	9.679	10.342	0	Subcritical Flow - Outlet Control	
	5	0.365	0.365	9.717	10.419	0	Subcritical Flow - Outlet Control	
	10	0.42	0.42	9.738	10.46	0	Subcritical Flow - Outlet Control	
	20	0.496	0.496	9.766	10.514	0	Subcritical Flow - Outlet Control	
	50	0.58	0.58	9.796	10.571	0	Subcritical Flow - Outlet Control	
	100	0.664	0.623	9.811	10.599	0.041	Subcritical Flow - Outlet Control	
	10000	2.482	0.623	9.811	10.599	1.86	Subcritical Flow - Outlet Control	
Chainage:	21340	Description	1 x closed					
	USIL	DSIL	Pit Level US DS	Oven Lev		/erflows To	Struct Locatn Cap ARI Cap ARI	
	10.828	10.25				xt Structure	253 15	
	ARI	Flow	Flow	Effective	Water	Excess	Descripto	
		Arriving	Through	Tailwater	Level	Flow	Descriptn	
	1	0.225	0.225	10.398	11.209	0	Inlet Control - Inlet not submerged	
	2	0.308	0.308	10.428	11.29	0	Inlet Control - Inlet not submerged	
	5	0.416	0.416	10.464	11.383	0	Inlet Control - Inlet not submerged	
	10	0.464	0.464	10.478	11.422	0	Inlet Control - Inlet not submerged	
	20	0.55	0.55	10.503	11.487	0	Inlet Control - Inlet not submerged	
	50	0.667	0.667	10.535	11.57	0	Inlet Control - Inlet not submerged	
	100	0.737	0.737	10.553	11.616	0 1.581	Inlet Control - Inlet not submerged	
0 k - i	10000	2.717	1.136	10.647	11.89		Inlet Control - Inlet submerged	
Chainage:	21340	Description	Pit Level	Oven		n high x 0.59i ////////////////////////////////////	Struct Locatn	
	USIL	DSIL	US DS	Lev		To	Cap ARI Cap ARI	
	10	9.575		1	0.53	Canal	15 15	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
	1	0.225	0.225	9.694	10.307	0	Subcritical Flow - Outlet Control	
	2	0.308	0.308	9.728	10.378	0	Subcritical Flow - Outlet Control	
	5	0.416	0.416	9.771	10.463	0	Subcritical Flow - Outlet Control	
	10	0.464	0.464	9.789	10.498	0	Subcritical Flow - Outlet Control	
	20	0.55	0.516	9.809	10.534	0.034	Subcritical Flow - Outlet Control	
	50	0.667	0.516	9.809	10.534	0.151	Subcritical Flow - Outlet Control	
	100	0.737	0.516	9.809	10.534	0.221	Subcritical Flow - Outlet Control	
,,	10000	2.717	0.516	9.809	10.534	2.201	Subcritical Flow - Outlet Control	
Chainage:	21470	Description	1 x closed					
	USIL	DSIL	Pit Level US DS	Over Lev		/erflows To	Struct Locatn Cap ARI Cap ARI	
	11.529	11.073				xt Structure	1 147	
	ARI	Flow Arriving	Flow Through	Effective Tailwater	Water Level	Excess Flow	Descriptn	
			0.400	11.218	12.001	0.034	Inlet Control - Inlet submerged	
	1	0.143	0.109		10.001	0.081	Inlet Control - Inlet submerged	
		0.143 0.19	0.109	11.218	12.001			
	1			11.218 11.218	12.001 12.001	0.148	Inlet Control - Inlet submerged	
	1 2	0.19	0.109				Inlet Control - Inlet submerged Inlet Control - Inlet submerged	
	1 2 5 10 20	0.19 0.257	0.109 0.109	11.218	12.001	0.148		
	1 2 5 10 20 50	0.19 0.257 0.289 0.346 0.419	0.109 0.109 0.109	11.218 11.218 11.218 11.218 11.218	12.001 12.001 12.001 12.001	0.148 0.18 0.237 0.31	Inlet Control - Inlet submerged	
	1 2 5 10 20	0.19 0.257 0.289 0.346	0.109 0.109 0.109 0.109	11.218 11.218 11.218	12.001 12.001 12.001	0.148 0.18 0.237	Inlet Control - Inlet submerged Inlet Control - Inlet submerged	

•••

Appendix C Stormwater Model Plans

Appendix D Figtree Hill Strategy Coordination

Arcadis

Will Laurantus Development Manager, Communities Level 14, Tower Three, International Towers Sydney Exchange Place, 300 Barangaroo Avenue, Barangaroo NSW 2000

Subject: Figtree Hill Stormwater Strategy – Precinct 8

Our Ref: FTH-00-CC-AAP-CV-LET-0005-StormStrategyPrecinct8 Date: 21/06/2022 Arcadis Australia Pacific Pty Ltd On the Lands of the Gadigal Level 16, 580 George St Sydney NSW 2000 Tel. +61 2 8907 9000 www.arcadis.com

Dear Will,

Arcadis has been engaged by Lendlease on the Figtree Hill project to provide civil engineering and stormwater drainage design services. We are currently assessing the masterplan strategy for site grading and stormwater drainage across the project to ensure that the staged delivery considers future stages, adjacent and external catchments and receiving water conditions (such as tailwater or canal crossings).

Precinct 8 is located at and adjacent to the southwestern end of the Figtree Hill site and is part of a potential future development area. This area is currently being master planned by another engineering consultant who has provided their stormwater catchment areas, design calculations and anticipated flows which will drain towards Figtree Hill. This information has been used as part of our overall stormwater strategy assessment and incorporated into water quantity (detention) sizing and quality (water sensitive urban design) control measures proposed within the Figtree Hill Precinct.

Principal Engineer Email: darlan.castro@arcadis.com Direct Line: +61 (7) 5503 4822 Mobile: +61 410 720 757

Registered office: Arcadis Australia Pacific Pty Ltd, On the Lands of the Gadigal, Level 16, 580 George Street, Sydney NSW 2000, Australia ABN 76 104 485 289